Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(2x-1\right)^{2016}\ge0;\left(3y+6\right)^{2014}\ge0;\left(z-1\right)^{2012}\ge0\)
\(\Rightarrow\left(2x-1\right)^{2016}+\left(3y+6\right)^{2014}+\left(z-1\right)^{2012}\ge0\)
Để \(\left(2x-1\right)^{2016}+\left(3y+6\right)^{2014}+\left(z-1\right)^{2012}=0\)\(\Leftrightarrow\left(2x-1\right)^{2016}=0;\left(3y+6\right)^{2014}=0;\left(z-1\right)^{2012}=0\)
\(\Leftrightarrow2x-1=0;3y+6=0;z-1=0\)
\(\Rightarrow x=\dfrac{1}{2};y=-2;z=1\)
\(\Rightarrow4x+y-3z=4.\dfrac{1}{2}+\left(-2\right)-3.1=2-2-3=-3\)
mình gợi ý nha
ta thấy biểu thức đầu \(\ge\)0
biểu thức 2\(\ge0\)
\(\Rightarrow\)biểu thức 3 =0
để vế trái =0
rồi lần lượt tìm xyz
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
\(4x=3y;5y=3z\Rightarrow\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{12}=\frac{z}{20}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
suy ra :
\(\frac{x}{9}=3\Rightarrow x=27\)
\(\frac{y}{12}=3\Rightarrow y=36\)
\(\frac{z}{20}=3\Rightarrow z=60\)
4x = 3y => x/3 = y/4 (1)
5y = 3z => y/3 = z/5 (2)
từ (1), (2) => \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) và 2x - 3y + z = 6
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{9\cdot2-3\cdot12+20}=\frac{6}{2}=3\)
suy ra: \(\frac{x}{9}=3\Rightarrow x=9\cdot3=27\)
\(\frac{y}{12}=3\Rightarrow y=12\cdot3=36\)
\(\frac{z}{20}=3\Rightarrow z=20\cdot3=60\)
4x=3y=>x/3=y/4=>x/9=y/12 (1)
5y=3z=>y/3=z/5=>y/12=z/20 (2)
từ 1 và 2 ta có :
x/9=y/12=z/20
=>2x/18=3y/36
áp ...ta có :
2x/18=3y/36=2x-3y/18-36=6/-18=-1/3
=>x/9=-1/3=>x=-3
=>y/12=-1/3=>y=-4
=>z/20=-1/3=>z=-20/3
\(\Rightarrow\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y}{2.9-3.12}=\frac{6}{-18}=-\frac{1}{3}\)
x =-1/3 . 9 = -3
y= -1/3 .12 = -4
z = -1/3 .20 = -20/3
thay x = -1 , y = -1 , z = -1 vào N ta có
N = 1 + (-1) + 1 + ... + 1 + (-1)
= [1 + (-1)] + [1 + (-1) ] + ... + [1 + (-1)]
= 0 + 0 + ... + 0
= 0
x=1/2,y=-2;z=1
Vậy 4x+y-3z=4.1/2+(-2)-3.1=-3
Ta có (2x-1)\(^{2016}\)+(3y+6)\(^{2014}\)+(z-1)\(^{2012}\)=0
\(\Leftrightarrow\)(2x-1)\(^{2016}\)=0 ; (3y+6)\(^{2014}\)=0 ; (z-1)\(^{2012}\)=0
Ta co :(2x-1)\(^{2016}\)=0\(\Rightarrow\)2x-1=0\(\Rightarrow\)2x=1\(\Rightarrow\)x=\(\frac{1}{2}\)
(3y+6)\(^{2014}\)=0 \(\Rightarrow\)3y+6=0 \(\Rightarrow\)3y=-6 \(\Rightarrow\)y=-2
(z-1)\(^{2012}\)=0 \(\Rightarrow\)z-1=0 \(\Rightarrow\)z=1
Vậy 4x+y-3z=4*\(\frac{1}{2}\)+(-2)-3*1=2-2-3=-3