Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì (2x-1)^2014 + (y-2/5)^2014 + /x+y-z/=0
(2x-1)^2014=0
((y-2/5)^2014=0
/x+y+z/=0
vậy 2x-1=0 thì x=1/2
y-2/5=0 thì y=2/5
x+y+z=0=1/2 +2/5 +z=0 thi z=-9/10
Ta có :
\(\left(x-\dfrac{1}{5}\right)^{2014}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
Mà \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{5}\right)^{2014}\ge0\\\left(y+0,4\right)^{100}\ge0\\\left(z-3\right)^{678}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-\dfrac{1}{5}\right)^{2014}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}\ge0\)
Lại có : \(\left(x-\dfrac{1}{5}\right)^{2014}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{5}\right)^{2014}=0\\\left(y+0,4\right)^{100}=0\\\left(z-3\right)^{678}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{5}=0\\y+0,4=0\\z-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-0,4\\z=3\end{matrix}\right.\)
Vậy ,,,
a: \(\left(2x-3\right)^{2012}+\left(y-\dfrac{2}{5}\right)^{2014}+\left|x+y-z\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\y-\dfrac{2}{5}=0\\x+y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{2}{5}\\z=\dfrac{19}{10}\end{matrix}\right.\)
b: 2015-|x-2015|=x
=>|x-2015|=2015-x
=>x-2015<=0
hay x<=2015
d: |x-999|+|1998-2x|=0
=>x-999=0
hay x=999
\(\left(x+\frac{2}{3}\right)^{2012}+\left|y-\frac{1}{4}\right|^{2000}+\left(x-y-z\right)^{2014}=0\)
\(\Leftrightarrow\hept{\begin{cases}x+\frac{2}{3}=0\\y-\frac{1}{4}=0\\x-y-z=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=\frac{1}{4}\\z=-\frac{11}{12}\end{cases}}\).
Ta có: \(\left(2x-1\right)^{2014}+\left(y-\dfrac{2}{5}\right)^{2014}+\left|x+y+z\right|=0\)
\(\Rightarrow\left(2x-1\right)^{2014}=0\) (1)
\(\Rightarrow\left(y-\dfrac{2}{5}\right)^{2014}=0\) (2)
\(\Rightarrow\left|x+y+z\right|=0\) (3)
(1) Ta tìm được x:
\(\left(2x-1\right)^{2014}=0\)
\(\Rightarrow2x-1=0\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\dfrac{1}{2}\)
(2) Ta tìm được y:
\(\left(y-\dfrac{2}{5}\right)^{2014}=0\)
\(\Rightarrow y-\dfrac{2}{5}=0\)
\(\Rightarrow y=\dfrac{2}{5}\)
Từ (1) và (2) ta kết hợp với (3) ta sẽ tìm được z:
\(x+y+z=0\) hay \(\dfrac{1}{2}+\dfrac{2}{5}+z=0\)
\(\Rightarrow\dfrac{9}{10}+z=0\)
\(\Rightarrow z=-\dfrac{9}{10}\)
Vậy: \(x=\dfrac{1}{2};y=\dfrac{2}{5};z=-\dfrac{9}{10}\)
\(\left(2x-1\right)^{2014}+\left(y-\dfrac{2}{5}\right)^{2014}+|x+y+z|=0\left(1\right)\)
mà \(\left(2x-1\right)^{2014}\ge0;\left(y-\dfrac{2}{5}\right)^{2014}\ge0\) (với mọi x;y)
\(\left(1\right)\Rightarrow2x-1=0;y-\dfrac{2}{5}=0;|x+y+z|=0\)
\(\Rightarrow x=\dfrac{1}{2};y=\dfrac{2}{5};z=-\dfrac{1}{2}-\dfrac{2}{5}=-\dfrac{9}{10}\)