Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a/ \(x\left(x^2+1\right)+2\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+1\right)=0\Rightarrow x=-2\)
b/
\(\Leftrightarrow x^3-6x^2+9x+5x^2-30x+45=0\)
\(\Leftrightarrow x\left(x-3\right)^2+5\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-3\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)
1.
c/ \(\Leftrightarrow x^3+2x^2+2x+x^2+2x+2=0\)
\(\Leftrightarrow x\left(x^2+2x+2\right)+x^2+2x+2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+2=0\left(vn\right)\end{matrix}\right.\)
d/
\(\Leftrightarrow x^4+x^3-2x^2-x^3-x^2+2x+4x^2+4x-8=0\)
\(\Leftrightarrow x^2\left(x^2+x-2\right)-x\left(x^2+x-2\right)+4\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x^2-x+4\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+4=0\left(vn\right)\\x^2+x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
không cần phương pháp đó đâu, mik có cách này hay hơn nè
tìm nghiệm của đthức trên
nếu nghiệm là số dương thì khi phân tích xong sẽ có 1 tsố là (x-1)
nếu nghiệm là số âm thì...........................................1..........(x+1)
VD: phân tích thành nhân tử: 2x^2+5x-3
Nghiệm của đa thức trên là 3
=> 2x^2+6x-x-3
=> 2x(x+3)-1(x+3)
=> (2x-1)(x+3)
ĐÓ, KICK MIK NHA
\(\left(4-3x\right)\left(10x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)
\(\left(7-2x\right)\left(4+8x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)
rồi thực hiện đến hết ...
Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>
\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(2x^2-7x+3=4x^2+4x-3\)
\(2x^2-7x+3-4x^2-4x+3=0\)
\(-2x^2-11x+6=0\)
\(2x^2+11x-6=0\)
\(2x^2+12x-x-6=0\)
\(2x\left(x+6\right)-\left(x+6\right)=0\)
\(\left(x+6\right)\left(2x-1\right)=0\)
\(x+6=0\Leftrightarrow x=-6\)
\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
\(3x-2x^2=0\)
\(x\left(2x-3\right)=0\)
\(x=0\)
\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Tự lm tiếp nha
https://www.mathway.com/vi/popular-problems/Algebra/242673
https://www.mathway.com/vi/Algebra
a) \(x^2+2x+7=0\)
\(\Leftrightarrow\left(x+1\right)^2=-6\) ( vô lý )
Vậy pt vô nghiệm
b) \(x^3-x^2-21x+45=0\)
\(\Leftrightarrow x^3-3x^2+2x^2-6x-15x+45=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+2x-15\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x+1\right)^2-4\right]=0\)
\(\Leftrightarrow\left(x-3\right)^2\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Vậy pt có tập nghiệm \(S=\left\{3,-5\right\}\)
a)
\(\left(4x-10\right)\cdot\left(24+5x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-\frac{24}{5}\end{matrix}\right.\)
Vậy \(S=\left\{\frac{5}{2};-\frac{24}{5}\right\}\)
b)
\(\left(2x-5\right)\left(3x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy \(S=\left\{\frac{5}{2};\frac{2}{3}\right\}\)
c)
\(\left(2x-1\right)\left(3x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{3}\end{matrix}\right.\)
Vậy \(S=\left\{\frac{1}{2};-\frac{1}{3}\right\}\)
d)
\(x\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy \(S=\left\{0;\frac{1}{2}\right\}\)
e) \(\left(5x+3\right)\left(x^2+4\right)\left(x-1\right)=0\)
Do \(x^2\ge0\) Nên \(x^2+4>0\)
\(\left(5x+3\right)\left(x^2+4\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}5x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{5}\\x=1\end{matrix}\right.\)
Vậy \(S=\left\{-\frac{3}{5};1\right\}\)
....... Còn lại cứ cho mỗi thừa số = 0 rồi tìm x như bình thường thôi bạn
1. (4x - 10)(24 + 5x) = 0
\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{-24}{5}\end{matrix}\right.\)
Vậy S = {\(\frac{5}{2}\); \(\frac{-24}{5}\)}
2. (2x - 5)(3x - 2) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy S = {\(\frac{5}{2}\); \(\frac{2}{3}\)}
3. (2x - 1)(3x + 1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-1}{3}\end{matrix}\right.\)
Vậy S = {\(\frac{1}{2}\); \(\frac{-1}{3}\)}
4. x(x2 - 1) = 0
\(\Leftrightarrow\) x(x - 1)(x + 1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy S = {0; 1; -1}
5. (5x + 3)(x2 + 4)(x - 1) = 0
VÌ x2 + 4 > 0 với mọi x nên
\(\Rightarrow\left[{}\begin{matrix}5x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-3}{5}\\x=1\end{matrix}\right.\)
Vậy S = {\(\frac{-3}{5}\); 1}
6. (x - 1)(x + 2)(x + 3) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=-3\end{matrix}\right.\)
Vậy S = {1; -2; -3}
7. (x - 1)(x + 5)(-3x + 8) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\\-3x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\\x=\frac{8}{3}\end{matrix}\right.\)
Vậy S = {1; -5; \(\frac{8}{3}\)}
Chúc bn học tốt!!
a,\(x^2-4x-5=0\)
\(\Rightarrow x^2-x+5x-5=0\)
\(\Rightarrow x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+5\right)=0\Rightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
b, \(2x^2-6x+4=0\)
\(\Rightarrow2x^2-2x-4x+4=0\)
\(\Rightarrow2x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(2x-4\right)=0\Rightarrow\left[{}\begin{matrix}x-1=0\\2x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
c, \(5x^2-x-18=0\)
\(\Rightarrow5x^2-10x+9x-18=0\)
\(\Rightarrow5x\left(x-2\right)+9\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(5x+9\right)=0\Rightarrow\left[{}\begin{matrix}x-2=0\\5x+9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{9}{5}\end{matrix}\right.\)
d, \(2x^3-3x^2+x+30\)
(bạn xem lại đề nha)
e, \(5x^3-21x^2+11x+5\)
\(=5x^3-5x^2-16x^2+16x-5x+5\)
\(=5x^2\left(x-1\right)-16x\left(x-1\right)-5\left(x-1\right)\)
\(=\left(x-1\right)\left(5x^2-16x-5\right)\)
Chúc bạn học tốt!!!
\(A.\left(2,3x-6,5\right)\left(0,1x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2,3x-6,5=0\\0,1x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2,3x=6,5\\0,1x=-2\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{6,5}{2,3}\\x=-20\end{cases}}\)
cảm ơn rất nhiều
Kcó j :))))