Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-5=\frac{1}{3\left(x+2\right)}\left(đkxđ:x\ne-2\right)\)
\(< =>3\left(x-5\right)\left(x+2\right)=1\)
\(< =>3\left(x^2-3x-10\right)=1\)
\(< =>x^2-3x-10=\frac{1}{3}\)
\(< =>x^2-3x-\frac{31}{3}=0\)
giải pt bậc 2 dễ r
\(\frac{x}{3}+\frac{x}{4}=\frac{x}{5}-\frac{x}{6}\)
\(< =>\frac{4x+3x}{12}=\frac{6x-5x}{30}\)
\(< =>\frac{7x}{12}=\frac{x}{30}< =>12x=210x\)
\(< =>x\left(210-12\right)=0< =>x=0\)
a: \(=\dfrac{4x-2+6x^2-6x+2x^2+1}{2x\left(2x-1\right)}=\dfrac{8x^2-2x-1}{2x\left(2x-1\right)}\)
a: 3x-5>15-x
=>4x>20
hay x>5
b: \(3\left(x-2\right)\left(x+2\right)< 3x^2+x\)
=>3x2+x>3x2-12
=>x>-12
b:
ĐKXĐ: \(x\notin\left\{0;2;-2\right\}\)
\(\left(\dfrac{4}{x^3-4x}+\dfrac{1}{x+2}\right):\left(\dfrac{x-2}{x^2+2x}-\dfrac{x}{2x+4}\right)\)
\(=\left(\dfrac{4}{x\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x+2}\right):\left(\dfrac{x-2}{x\left(x+2\right)}-\dfrac{x}{2\left(x+2\right)}\right)\)
\(=\dfrac{4+x\left(x-2\right)}{x\left(x-2\right)\cdot\left(x+2\right)}:\dfrac{2\left(x-2\right)-x^2}{x\left(x+2\right)\cdot2}\)
\(=\dfrac{x^2-2x+4}{x\left(x-2\right)\left(x+2\right)}\cdot\dfrac{2x\left(x+2\right)}{-\left(x^2-2x+4\right)}\)
\(=\dfrac{-2}{x-2}\)
c:ĐKXĐ: x<>0
\(\left(x-\dfrac{3}{x}\right):\left(\dfrac{x^2+2x+1}{x}-\dfrac{2x+4}{x}\right)\)
\(=\dfrac{x^2-3}{x}:\dfrac{x^2+2x+1-2x-4}{x}\)
\(=\dfrac{x^2-3}{x}\cdot\dfrac{x}{x^2-3}\)
=1
\(\frac{2x-1}{x-5}-1>0\Leftrightarrow\frac{2x-1-x+5}{x-5}>0\Leftrightarrow\frac{x+4}{x-5}>0\)
TH1 : \(\hept{\begin{cases}x+4>0\\x-5>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-4\\x>5\end{cases}\Leftrightarrow}x>5}\)
TH2 : \(\hept{\begin{cases}x+4< 0\\x-5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -4\\x< 5\end{cases}\Leftrightarrow x< -4}\)