Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: \(x\ge-1\)
PT \(\Rightarrow-2x-2\le x^2-2x-3\le2x+2\)
+) Xét \(x^2-2x-3\ge-2x-2\) \(\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)
+) Xét \(x^2-2x-3\le2x+2\) \(\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge5\end{matrix}\right.\)
\(\Rightarrow x\in(-\infty;-1]\cup[-5;+\infty)\)
\(\Leftrightarrow\left|2x+4\right|-\left|1-x\right|=-3\)
\(\left|2x+1\right|=5\)
\(\Rightarrow2x+1=\pm5\)
+) \(2x+1=5\Rightarrow2x=4\Rightarrow x=2\)
+) \(2x+1=-5\Rightarrow2x=-6\Rightarrow x=-3\)
Vậy \(x\in\left\{2;-3\right\}\)
\(\left|2x+1\right|=5\)
\(\Rightarrow\left[\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}2x=5-1\\2x=-5-1\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=4:2\\x=-6:2\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy : \(\left[\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
1/ Tinh ∆. Pt co 2 nghiem x1,x2 <=> ∆>=0.
Theo dinh ly Viet: S=x1+x2=-b/a=m+3.
Theo gt: |x1|=|x2| <=> ...
2/ \(\frac{\sin^2x-\cos^2x}{1+2\sin x.\cos x}\)
\(=\frac{\cos^2x\left(\frac{\sin^2x}{\cos^2x}-\frac{\cos^2x}{\cos^2x}\right)}{\cos^2x\left(\frac{1}{\cos^2x}+\frac{2\sin x.\cos x}{\cos^2x}\right)}\)
\(=\frac{\tan^2x-1}{\tan^2x+1+2\tan x}\)
\(=\frac{\left(\tan x-1\right)\left(\tan x+1\right)}{\left(\tan x+1\right)^2}\)
\(=\frac{\tan x-1}{\tan x+1}\left(dpcm\right)\)
c/
- Ta có: \(\overrightarrow{BA}^2=\left(\overrightarrow{CA}-\overrightarrow{CB}\right)^2\)
\(\Leftrightarrow BA^2=CA^2-2\overrightarrow{CA}.\overrightarrow{CB}+CB^2\)
\(\Leftrightarrow\overrightarrow{CA}.\overrightarrow{CB}=\frac{CA^2+CB^2-BA^2}{2}=\frac{77}{2}\)
- \(\overrightarrow{MN}^2=\left(\overrightarrow{CN}-\overrightarrow{CM}\right)^2=\left(\frac{3}{2}\overrightarrow{CB}-\frac{5}{7}\overrightarrow{CA}\right)^2\)
\(\Leftrightarrow MN^2=\frac{9}{4}CB^2-\frac{15}{7}\overrightarrow{CA}.\overrightarrow{CB}+\frac{25}{49}CA^2\)
\(=\frac{9}{4}.64-\frac{15}{7}.\frac{77}{2}+\frac{25}{49}.49\)
\(=\frac{173}{2}\)
\(\Rightarrow MN=\sqrt{\frac{173}{2}}=\frac{\sqrt{346}}{2}\)
a, Phương trình có hai nghiệm trái dấu khi \(2\left(2m^2-3m-5\right)< 0\)
\(\Leftrightarrow\left(2m-5\right)\left(m+1\right)< 0\)
\(\Leftrightarrow-1< m< \dfrac{5}{2}\)
b, TH1: \(m^2-3m+2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
Phương trình đã cho có nghiệm duy nhất
TH2: \(m^2-3m+2\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)
Phương trình có hai nghiệm trái dấu khi \(-5\left(m^2-3m+2\right)< 0\)
\(\Leftrightarrow m^2-3m+2>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)
Vậy \(m>2\) hoặc \(m< 1\)
Ta có :
\(\left|2x-1\right|=\left|2x+3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=2x+3\\2x-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-2x=3+1\\2x+2x=-3+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0=4\left(loại\right)\\4x=-2\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{-1}{2}\)
Vậy ...
\(\left|2x-1\right|=\left|2x+3\right|\)
\(\Rightarrow\left|2x-1\right|=2x+3\)
\(\Rightarrow2x-1=2x+3\) hoặc \(2x-1=-\left(2x+3\right)\)
\(\Rightarrow2x-2x=3+1\) hoặc \(2x-1=-2x-3\)
\(\Rightarrow0=4\) ( loại ) hoặc \(2x+2x=-3+1\)
\(\Rightarrow4x=-2\)
\(\Rightarrow x=\dfrac{-1}{2}\)