K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2021

lên google

9 tháng 12 2018

Câu (C) sai

27 tháng 1 2019

a)⇔(2x+1)(2x+1)/(2x-1)(2x+1)-(2x-1)(2x-1)/(2x-1)(2x+1)=8/(2x-1)(2x+1)

⇔(2x+1)^2-(2x-1)^2=8

⇔[(2x+1)-(2x-1)][(2x+1)(2x-1)]=8

⇔2.4x=8

⇔x=1.S={1}

a: \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)

=>(2x+1)^2-(2x-1)^2=8

=>4x^2+4x+1-4x^2+4x-1=8

=>8x=8

=>x=1

b: \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=3x\cdot\left(1-\dfrac{x-1}{x+1}\right)\)

=>\(\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}=3x\cdot\dfrac{x+1-x+1}{x+1}\)

=>\(\dfrac{4x}{\left(x-1\right)\left(x+1\right)}=3x\cdot\dfrac{2}{x+1}\)

=>4x=6x(x-1)

=>6x^2-6x-4x=0

=>6x^2-10x=0

=>2x(3x-5)=0

=>x=0 hoặc x=5/3

8 tháng 7 2018

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)

ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)

<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)

<=> \(\frac{3x+10}{x^2+2x-3}=0\)

<=> \(3x+10=0\)

<=> \(x=-\frac{10}{3}\)

a: \(=\dfrac{x^2-2x+1}{x}:\dfrac{x-1-3x^2+3x-3}{\left(x-1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2}{x}\cdot\dfrac{\left(x-1\right)\left(x^2-x+1\right)}{-2x^2+4x-4}\)

\(=\dfrac{\left(x-1\right)^3\cdot\left(x^2-x+1\right)}{-2x\left(x^2-2x+2\right)}\)

b: \(=\left[\dfrac{x^2-2x+1}{x^2+x+1}+\dfrac{2x^2-4x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right]:\dfrac{2}{x^2+1}\)

\(=\dfrac{x^3-3x^2+3x+1+2x^2-4x+1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}\)

\(=\dfrac{x^3+3}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}\)

7 tháng 3 2021

\(\frac{1-x}{1+x}+3=\frac{2x+3}{x+1}\left(ĐKXĐ:x\ne-1\right)\)

\(\Leftrightarrow\frac{1-x}{x+1}+\frac{3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)

\(\Leftrightarrow\frac{1-x+3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)

\(\Rightarrow1-x+3\left(x+1\right)=2x+3\)

\(\Leftrightarrow1-x+3x+3=2x+3\)

\(\Leftrightarrow2x+4=2x+3\)

\(\Leftrightarrow0x=-1\)(vô nghiệm)

Vậy phương trình vô nghiệm.

7 tháng 3 2021

\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2-10}{2x-3}\left(ĐKXĐ:x\ne\frac{3}{2}\right)\)

\(\Leftrightarrow\frac{x^2+4x+4}{2x-3}-\frac{2x-3}{2x-3}=\frac{x^2-10}{2x-3}\)

\(\Leftrightarrow\frac{x^2+4x+4-2x+3}{2x-3}=\frac{x^2-10}{2x-3}\)

\(\Rightarrow x^2+4x+4-2x+3=x^2-10\)

\(\Leftrightarrow2x+7=-10\)

\(\Leftrightarrow2x=-17\)

\(\Leftrightarrow x=\frac{-17}{2}\)(thỏa mãn ĐKXĐ)

Vậy phương trình có nghiệm duy nhất : \(x=\frac{-17}{2}\)

1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)

=-27x^3-18x^2+4x+10

2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27

=7x^3+37x^2+46x+33

5:

\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)

\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)

=7x^3-48x^2+8x-35