K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2016

tui khong biet canh viet can nen viet loi nha

can2 +1 > can1 + 1=2

14 tháng 7 2018

n là số nguyên dương

Bình phương hai vế, ta được:

\(\left(\sqrt{n+2}-\sqrt{n+1}\right)^2=n+2+n+1-2\sqrt{\left(n+2\right)\left(n+1\right)}\) \(=2n+3-2\sqrt{\left(n+2\right)\left(n+1\right)}\)

\(\left(\sqrt{n+1}-\sqrt{n}\right)^2=n+1+n-2\sqrt{n\left(n+1\right)}\) \(=2n+1-2\sqrt{n\left(n+1\right)}\)

Ta có: \(\left(n+2\right)\left(n+1\right)>n\left(n+1\right)\Rightarrow2\sqrt{\left(n+2\right)\left(n+1\right)}>2\sqrt{n\left(n+1\right)}\)

Mà 2n + 3 > 2n + 1

 \(\Rightarrow2n+3-2\sqrt{\left(n+2\right)\left(n+1\right)}>2n+1-2\sqrt{n\left(n+1\right)}\)

=> ( √n+2 -  √n+1)^2 > ( √n-1 -  √n)^2

=>  √n+2 -  √n+1 >  √n-1 -  √n

P/s: Em làm còn sai nhiều, mong mọi người góp ý, đừng chọn sai cho em. Em cảm ơn

14 tháng 7 2018

Hình như sai b ạ

19 tháng 9 2021

a) \(1=\sqrt{1}< \sqrt{2}\)

b) \(2=\sqrt{4}>\sqrt{3}\)

c) \(6=\sqrt{36}< \sqrt{41}\)

d) \(7=\sqrt{49}>\sqrt{47}\)

e) \(2=1+1=\sqrt{1}+1< \sqrt{2}+1\)

f) \(1=2-1=\sqrt{4}-1>\sqrt{3}-1\)

g) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\)

h) \(\sqrt{3}>0>-\sqrt{12}\)

i) \(5=\sqrt{25}< \sqrt{29}\)

\(\Rightarrow-5>-\sqrt{29}\)

19 tháng 9 2021

Giỏi quá

a: ĐKXĐ: \(x>0\)

b: Ta có: \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)

\(=x+\sqrt{x}-2\sqrt{x}-1+1\)

\(=x-\sqrt{x}\)

22 tháng 6 2016

\(\sqrt{2}+1>\sqrt{1}+1=2\) 2

xong rui ban

22 tháng 6 2016

A) \(2\sqrt{31}=\sqrt{4\cdot31}=\sqrt{124}>\sqrt{10}\)

B)\(\sqrt{3-1}=\sqrt{2}>\sqrt{1}=1\)

C) \(-3\sqrt{11}=-\sqrt{99}>-\sqrt{144}=-12\)

16 tháng 8 2021

Ta có:

\(\left(\sqrt{5-3\sqrt{2}}+\sqrt{3\sqrt{2}-4}\right)^2=5-3\sqrt{2}+3\sqrt{2}-4+2\sqrt{5-3\sqrt{2}}\sqrt{3\sqrt{2}-4}\)

\(=1+2\sqrt{27\sqrt{2}-38}\)

Áp dụng vào bài toán t được

\(\dfrac{\sqrt{1+2\sqrt{27\sqrt{2}-38}}-\sqrt{5-3\sqrt{2}}}{\sqrt{3\sqrt{2}-4}}\)

\(=\dfrac{\sqrt{\left(\sqrt{5-3\sqrt{2}}+\sqrt{3\sqrt{2}-4}\right)^2}-\sqrt{5-3\sqrt{2}}}{\sqrt{3\sqrt{2}-4}}\)

\(=\dfrac{\sqrt{5-3\sqrt{2}}+\sqrt{3\sqrt{2}-4}-\sqrt{5-3\sqrt{2}}}{\sqrt{3\sqrt{2}-4}}=1\)

8 tháng 10 2021

\(c,=2+2\sqrt{3}-\left(2+\sqrt{2}\right)=2\sqrt{3}-\sqrt{2}\\ d,=\sqrt{\left(2x-3\right)^2}-2x+1=\left|2x-3\right|-2x+1\\ =2x-3-2x+1=-2\left(x\ge\dfrac{3}{2}\Leftrightarrow2x-3\ge0\right)\)

5 tháng 9 2018

\(\sqrt{6+\sqrt{6+\sqrt{6}}}+\sqrt{2+\sqrt{2+\sqrt{2}}}\)

\(< \sqrt{6+\sqrt{6+\sqrt{9}}}+\sqrt{2+\sqrt{2+\sqrt{4}}}=3+2=5\)

NV
8 tháng 8 2021

a.

\(2x-x^2+7=-\left(x^2-2x+1\right)+8=-\left(x-1\right)^2+8\le8\)

\(\Rightarrow2+\sqrt{2x-x^2+7}\le2+\sqrt{8}=2+2\sqrt{2}\)

\(\Rightarrow\dfrac{3}{2+\sqrt{2x-x^2+7}}\ge\dfrac{3}{2+2\sqrt{2}}=\dfrac{3\sqrt{2}-3}{2}\)

\(A_{min}=\dfrac{3\sqrt{2}-3}{2}\) khi \(x=1\)

b. ĐKXĐ: \(x\le1\)

\(B=-\left(1-x-\sqrt{2\left(1-x\right)}+\dfrac{1}{2}-\dfrac{1}{2}-1\right)\)

\(B=-\left(1-x-\sqrt{2\left(1-x\right)}+\dfrac{1}{2}\right)+\dfrac{3}{2}\)

\(B=-\left(\sqrt{1-x}-\dfrac{\sqrt{2}}{2}\right)^2+\dfrac{3}{2}\le\dfrac{3}{2}\)

\(B_{max}=\dfrac{3}{2}\) khi\(x=\dfrac{1}{2}\)

8 tháng 8 2021

dạ em cảm ơn anh ạ 

16 tháng 12 2020

Đặt \(A=\sqrt{\sqrt2+2\sqrt{\sqrt2-1}}+\sqrt{\sqrt2-2\sqrt{\sqrt2+1}}\).

\(A=\sqrt{\sqrt2 +2\sqrt{\sqrt2-1}}+\sqrt{\sqrt2 -2\sqrt{\sqrt2+1}}\\=> A^2=\sqrt2+2\sqrt{\sqrt2-1}+\sqrt2-2\sqrt{\sqrt2+1}\\=2\sqrt2+2\sqrt{(\sqrt2+1)(\sqrt2-1)}\\=2\sqrt2+2\\=>A=\sqrt{2\sqrt2+2}\)