Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích của nửa hình tròn có đường kính 4R bằng:
Chọn (C) 2π R 2
Làm nốt bài 2 nhé. Hôm qua mình bận nên không làm tiếp được
Bài 2:
a) 4 điểm $C,M,B,N$ cùng thuộc $(O)$ nên $CNBM$ là tứ giác nội tiếp.
$\Rightarrow HC.HB=HM.HN$ (đây là tính chất quen thuộc)
Nếu muốn chứng minh chi tiết bạn có thể chỉ ra $\triangle HMB\sim \triangle HCN$ (g.g)
$\Rightarrow \frac{HM}{HC}=\frac{HB}{HN}\Rightarrow HM.HN=HB.HC$
b)
Vì $AC=AB$ (tính chất 2 tiếp tuyến cắt nhau tại 1 điểm). $OB=OC=R$ nên $OA$ là trung trực của $BC$
$\Rightarrow OA\perp BC$ tại $H$ và $H$ là trung điểm của $BC$. Từ đây ta có:
Tam giác $ACO$ vuông tại $C$, có $CH\perp AO$, áp dụng công thức hệ thức lượng trong tam giác vuông thì:
$HA.HO=CH^2$.
Mà $CH=BH$ (do $H$ là trung điểm của $BC$) nên $HA.HO=HC.HB$
Kết hợp với kết quả phần a suy ra $HA.HO=HM.HN$
$\Rightarrow \triangle AMON$ nội tiếp
$\Rightarrow \widehat{NAO}=\widehat{NMO}$ và $\widehat{MAO}=\widehat{MNO}$
Mà $\widehat{NMO}=\widehat{MNO}$ (do tam giác $MON$ cân tại $O$)
$\Rightarrow \widehat{NAO}=\widehat{MAO}(1)$
Mặt khác, cũng theo tính chất 2 tiếp tuyến cắt nhau tại 1 điểm, $AO$ là phân giác $\widehat{CAB}$ nên $\widehat{CAO}=\widehat{BAO}(2)$
Lấy $(2)-(1)$ suy ra $\widehat{CAN}=\widehat{MAB}$ (đpcm)