K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

@Lia - Maths is fun !\(Let:a,b,c\ge0\text{ }such:a+b+c=3.Found\text{ }max\text{ }and\text{ }min\text{ }A=\sqrt{x+3}+\sqrt{y+3}+\sqrt{z+3}\)    My solution !*Found maxUsing Bunhiacopxki we have\(A^2\le\left(a+3+b+3+c+3\right)\left(1+1+1\right)=...=36\)\(\Rightarrow A\le6\left(Because\:\text{ }\text{ }A\ge0\text{ }so\text{ }A\text{ }can't\text{ }< 0\text{ }\right)\)\(A_{max}=6\text{ }\Leftrightarrow a=b=c=1\)*Found minWe have extra...
Đọc tiếp

@Lia - Maths is fun !

\(Let:a,b,c\ge0\text{ }such:a+b+c=3.Found\text{ }max\text{ }and\text{ }min\text{ }A=\sqrt{x+3}+\sqrt{y+3}+\sqrt{z+3}\)    

My solution !

*Found max

Using Bunhiacopxki we have

\(A^2\le\left(a+3+b+3+c+3\right)\left(1+1+1\right)=...=36\)

\(\Rightarrow A\le6\left(Because\:\text{ }\text{ }A\ge0\text{ }so\text{ }A\text{ }can't\text{ }< 0\text{ }\right)\)

\(A_{max}=6\text{ }\Leftrightarrow a=b=c=1\)

*Found min

We have extra inequality \(\sqrt{x+z}+\sqrt{y+z}\ge\sqrt{z}+\sqrt{x+y+z}\left(x;y;z\ge0\right)\)(1)

Prove : \(\left(1\right)\Leftrightarrow x+y+2z+2\sqrt{\left(x+z\right)\left(y+z\right)}\ge z+x+y+z+2\sqrt{z\left(x+y+z\right)}\)

                     \(\Leftrightarrow\sqrt{xy+xz+yz+z^2}\ge\sqrt{xz+yz+z^2}\)        

                    \(\Leftrightarrow xy+xz+yz+z^2\ge xz+yz+z^2\)

                    \(\Leftrightarrow xy\ge0\left(True!\right)\)

Using (1) we have

\(A=\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\ge\sqrt{3}+\sqrt{a+b+3}+\sqrt{c+3}\)

                                                                                 \(=\sqrt{3}+\sqrt{3}+\sqrt{a+b+c}\)

                                                                                  \(=3\sqrt{3}\)

\(A_{min}=3\sqrt{3}\text{ }when\text{ }\hept{\begin{cases}a=b=\frac{3}{2}\\c=0\end{cases}}\)

       (In here I using when because there are many other a,b,c such a = 0 ; b = c = 3/2)

The problem is done !

6
22 tháng 2 2019

\(A=\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\)

CTV Should comply with the rules of olm.

20 tháng 8 2023

Áp dụng BĐT Cauchy cho cặp số dương \(\dfrac{1}{\left(z+x\right)};\dfrac{1}{\left(z+y\right)}\)

\(\dfrac{1}{\left(z+x\right)}+\dfrac{1}{\left(z+y\right)}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\)

\(\Rightarrow\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\left(1\right)\)

Tương tự ta được

\(\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}\le\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}\left(2\right)\)

\(\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\) ta được :

\(P=\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}+\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}+\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\)

\(\Rightarrow P\le2\left(x+y+z\right)=2.3=6\)

\(\Rightarrow GTLN\left(P\right)=6\left(tạix=y=z=1\right)\)

NV
21 tháng 1 2021

\(\sqrt{\dfrac{x^3}{y^3}}+\sqrt{\dfrac{x^3}{y^3}}+1\ge\dfrac{3x}{y}\) ; \(2\sqrt{\dfrac{y^3}{z^3}}+1\ge\dfrac{3y}{z}\) ; \(2\sqrt{\dfrac{z^3}{x^3}}+1\ge\dfrac{3z}{x}\)

\(\Rightarrow2VT+3\ge\dfrac{3x}{y}+\dfrac{3y}{z}+\dfrac{3z}{x}\)

\(\Rightarrow2VT+3\ge\dfrac{2x}{y}+\dfrac{2y}{z}+\dfrac{2z}{x}+3\sqrt[3]{\dfrac{xyz}{xyz}}\)

\(\Rightarrow VT\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\) (đpcm)

AH
Akai Haruma
Giáo viên
28 tháng 2 2017

Bài 1)

Ta biết ĐKXĐ:

\(\left\{\begin{matrix}4-x^2\ge0\\x^4-16\ge0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}4-x^2\ge0\\\left(x^2-4\right)\left(x^2+4\right)\ge0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}4-x^2\ge0\\x^2-4\ge0\end{matrix}\right.\Rightarrow x^2-4=0\rightarrow x=\pm2\)

Mặt khác \(4x+1\geq 0\Rightarrow x=2\)

Thay vào PT ban đầu : \(\Rightarrow 3+|y-1|=-y+5\Leftrightarrow |y-1|=2-y\)

Xét TH \(y-1\geq 0\)\(y-1<0\) ta thu được \(y=\frac{3}{2}\)

Thu được cặp nghiệm \((x,y)=\left (2,\frac{3}{2}\right)\)

AH
Akai Haruma
Giáo viên
28 tháng 2 2017

Bài 2)

BĐT cần chứng minh tương đương với:

\(\sqrt{\frac{z(x-z)}{xy}}+\sqrt{\frac{z(y-z)}{xy}}\leq 1\Leftrightarrow A=\left(\sqrt{\frac{z(x-z)}{xy}}+\sqrt{\frac{z(y-z)}{xy}}\right)^2\leq 1\)

Áp dụng BĐT Cauchy - Schwarz kết hợp AM-GM:

\(A\leq \left ( \frac{z}{y}+\frac{z}{x} \right )\left ( \frac{x-z}{x}+\frac{y-z}{y} \right )=\left ( \frac{z}{x}+\frac{z}{y} \right )\left ( 2-\frac{z}{x}-\frac{z}{y} \right )\)

\(\leq \left ( \frac{\frac{z}{x}+\frac{z}{y}+2-\frac{z}{x}-\frac{z}{y}}{2} \right )^2=1\)

Do đó ta có đpcm.

NV
21 tháng 9 2020

Điều kiện là các số dương

\(VT=\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)

\(VT\ge\left(x+y+z\right)\left(xy+yz+zx\right)-\frac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)

\(VT\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\ge\frac{8}{9}\left(x+y+z\right).3\sqrt[3]{x^2y^2z^2}=VP\)

Dấu "=" xảy ra khi \(x=y=z\)