Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{242}.\sqrt{26}.\sqrt{130}.\sqrt{0,9}-\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)\)
\(=\sqrt{121}.\sqrt{2}.\sqrt{2}.\sqrt{13}.\sqrt{13}.\sqrt{10}.\sqrt{0,9}-\left(2-1\right)\)
\(=11.2.13.\sqrt{9}-1=286.3-1=857\)
\(\frac{3-\sqrt{6}}{\sqrt{12}-\sqrt{8}}-\frac{\sqrt{15}-\sqrt{5}}{2\sqrt{12}-4}+\frac{\sqrt{17-4\sqrt{15}}}{4}\)
\(=\frac{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\left(\sqrt{3}-\sqrt{2}\right)}-\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{4\left(\sqrt{3}-1\right)}+\frac{\sqrt{\left(2\sqrt{3}-\sqrt{5}\right)^2}}{4}\)
\(=\frac{\sqrt{3}}{2}-\frac{\sqrt{5}}{4}+\frac{2\sqrt{3}-\sqrt{5}}{4}\)
\(=\sqrt{3}-\frac{\sqrt{5}}{4}\)
\(Q=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
b.\(Q< 1\)
\(\Leftrightarrow x-\sqrt{x}-2< x-5\sqrt{x}+6\)
\(\Leftrightarrow4\sqrt{x}-8< 0\)
\(\Leftrightarrow0\le x< 4\)
Vay de Q<1 thi \(0\le0< 4\)
Ở onlinemath thì đông người thật nhưng không làm được bài khó
=> sang miny nhé bạn , bạn đặt câu hỏi rồi hỏi luôn emkhongnumberone ( thiên tài trong miny )
=> miny ít người nhưng rất hay onl và rất thông minh
thằng kia mày nghĩ sao trong onlime math k ai làm đươc bài khó
con cacacacacacacacacacacacacacacacacacca
@@22@22@22@@222@@2@@2@@@2@2
những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé
\(A=\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\sqrt{2}+1+\sqrt{2}-1=2\sqrt{2}\)
\(B=\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\frac{\sqrt{3}.\sqrt{5}-\sqrt{2}.\sqrt{3}}{\sqrt{5}.\sqrt{7}-\sqrt{2}.\sqrt{7}}=\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\frac{\sqrt{3}}{\sqrt{7}}=\sqrt{\frac{3}{7}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{3}-1}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{2-\sqrt{3}}}\)
\(C=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(C=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(C=\sqrt{6+2.\left(\sqrt{3}-1\right)}\)
\(C=\sqrt{6+2\sqrt{3}-2}\)
\(C=\sqrt{4+2\sqrt{3}}\)
\(C=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
1) Ta có: \(\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{2+2\sqrt{2}+1}+\sqrt{2-2\sqrt{2}+1}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\sqrt{2}+1+\sqrt{2}-1\)
\(=2\sqrt{2}\approx2,82843\)
2) Ta có: \(B=\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
\(\Leftrightarrow B=\frac{\sqrt{5}.\sqrt{3}-\sqrt{2}.\sqrt{3}}{\sqrt{5}.\sqrt{7}-\sqrt{2}.\sqrt{7}}\)
\(\Leftrightarrow B=\frac{\sqrt{3}.\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}.\left(\sqrt{5}-\sqrt{2}\right)}\)
\(\Leftrightarrow B=\frac{\sqrt{3}}{\sqrt{7}}\approx0,65465\)
3) Ta có: \(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(\Leftrightarrow C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{3+2\sqrt{3}+1}}}\)
\(\Leftrightarrow C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{8}.\sqrt{3-\sqrt{3}-1}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{2.8-2.2.\sqrt{3}.2}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{12-2.\sqrt{4.3}.2+1}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{12-2.\sqrt{12}.2+4}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{\left(\sqrt{12}-2\right)^2}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{12}-2}\)
\(\Leftrightarrow C=\sqrt{3+2\sqrt{3}+1}\)
\(\Leftrightarrow C=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(\Leftrightarrow C=\sqrt{3}+1\approx2,73205\)
+) Ta có: \(2\sqrt{75}-4\sqrt{27}+3\sqrt{12}\)
\(=2\sqrt{25}.\sqrt{3}-4\sqrt{9}.\sqrt{3}+3\sqrt{4}.\sqrt{3}\)
\(=10.\sqrt{3}-12.\sqrt{3}+6.\sqrt{3}\)
\(=4\sqrt{3}\approx6,9282\)
+) Ta có:\(\sqrt{x+6\sqrt{x-9}}\)
\(=\sqrt{x-9+6\sqrt{x-9}+9}\)
\(=\sqrt{\left(\sqrt{x-9}-3\right)^2}\)
\(=\left|\sqrt{x-9}-3\right|\)
\(\frac{2}{\sqrt{5}+\sqrt{3}}+\frac{1}{2-\sqrt{3}}=\frac{2\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}+\frac{2+\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)
\(=\frac{2\left(\sqrt{5}-\sqrt{3}\right)}{5-3}+\frac{2+\sqrt{3}}{4-3}=\sqrt{5}-\sqrt{3}+2+\sqrt{3}=\sqrt{5}+2\)