Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sin5x+sinx+sin3x=0\)
\(\Leftrightarrow2sin3x.cos2x+sin3x=0\)
\(\Leftrightarrow sin3x\left(2cos2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\\cos2x=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=k\pi\\2x=\pm\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{3}\\x=\pm\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)
1.
\(sin^3x+cos^3x=1-\dfrac{1}{2}sin2x\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)=1-sinx.cosx\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)=1-sinx.cosx\)
\(\Leftrightarrow\left(1-sinx.cosx\right)\left(sinx+cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx.cosx=1\\sinx+cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=2\left(vn\right)\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\pi-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)
2.
\(\left|cosx-sinx\right|+2sin2x=1\)
\(\Leftrightarrow\left|cosx-sinx\right|-1+2sin2x=0\)
\(\Leftrightarrow\left|cosx-sinx\right|-\left(cosx-sinx\right)^2=0\)
\(\Leftrightarrow\left|cosx-sinx\right|\left(1-\left|cosx-sinx\right|\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\\left|cosx-sinx\right|=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=k\pi\\cos^2x+sin^2x-2sinx.cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\1-sin2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\sin2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)
Đây nè:
Câu hỏi của Julian Edward - Toán lớp 11 | Học trực tuyến
Câu hỏi của Julian Edward - Toán lớp 11 | Học trực tuyến
d/
Đặt \(sinx-cosx=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\) \(\Rightarrow\left|t\right|\le\sqrt{2}\)
\(t^2=1-2sinx.cosx\Rightarrow sinx.cosx=\frac{1-t^2}{2}\)
Pt trở thành:
\(6t-1=\frac{1-t^2}{2}\)
\(\Leftrightarrow t^2+12t-3=0\)
\(\Rightarrow\left[{}\begin{matrix}t=\sqrt{39}-6\\t=-\sqrt{39}-6< -\sqrt{2}\left(l\right)\end{matrix}\right.\) (ủa giáo viên ra đề ngẫu nhiên à?)
\(\Rightarrow sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{39}-6}{\sqrt{2}}\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=arcsin\left(\frac{\sqrt{39}-6}{\sqrt{2}}\right)+k2\pi\\x-\frac{\pi}{4}=\pi-arcsin\left(\frac{\sqrt{39}-6}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=...\)
a: \(\Leftrightarrow2\cdot\sin3x\cdot\cos x-2\cos^2x=0\)
\(\Leftrightarrow\cos x\left(\sin3x-\cos x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\\sin3x=\cos x=\sin\left(\dfrac{\Pi}{2}-x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\3x=\dfrac{\Pi}{2}-x+k2\Pi\\3x=\dfrac{\Pi}{2}+x+k2\Pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{2}\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)
b: \(\Leftrightarrow\sin x+\sin5x+\sin^2x=0\)
\(\Leftrightarrow\sin x=0\)
hay \(x=k\Pi\)
sin2x + 1 - 2sin2x + sinx + cosx = 0
⇔ sin2x + cos2x + sinx + cosx = 0
⇔ \(\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)+\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\)
⇔ \(sin\left(2x+\dfrac{\pi}{4}\right)+sin\left(x+\dfrac{\pi}{4}\right)=0\)
⇔ \(2sin\left(\dfrac{3x}{2}+\dfrac{\pi}{4}\right).cos\dfrac{x}{2}=0\)
⇔ \(\left[{}\begin{matrix}sin\left(3x+\dfrac{\pi}{4}\right)=0\\cos\dfrac{x}{2}=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k.\dfrac{\pi}{3}\\x=\pi+k.2\pi\end{matrix}\right.\) , k ∈ Z
a: sin x=3/2
mà -1<=sin x<=1
nên \(x\in\varnothing\)
b; \(sinx=\dfrac{\sqrt{2}}{2}\)
=>sinx=sin(pi/4)
=>x=pi/4+k2pi hoặc x=pi-pi/4+k2pi
=>x=pi/4+k2pi hoặc x=3/4pi+k2pi
c: sin7x=sin5x
=>7x=5x+k2pi hoặc 7x=pi-5x+k2pi
=>2x=k2pi hoặc 12x=pi+k2pi
=>x=kpi hoặc x=pi/12+kpi/6
d: =>5x=45 độ+k*360 độ hoặc 5x=180 độ -45 độ+k*360 độ
=>x=9 độ+k*72 độ hoặc 5x=135 độ+k*360 độ
=>x=9 độ+k*72 độ hoặc x=27 độ+k*72 độ
Tớ cũng giải ra sinx=0 như câu nhưng mắc cái phần sau á
Bằng 1 thì ez r cậu :<