Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với \(n=2\Rightarrow P_2=2!=2=1!+1\) (đúng)
- Với \(n=3\Rightarrow\left\{{}\begin{matrix}P_3=3!=6\\2P_2+P_1+1=2.2!+1+1=6\end{matrix}\right.\) (đúng)
- Giả sử đẳng thức đúng với \(n=k\ge2\) hay:
\(P_k=\left(k-1\right)P_{k-1}+\left(k-2\right)P_{k-2}+...+P_1+1\)
Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay
\(P_{k+1}=k.P_k+\left(k-1\right)P_{k-1}+...+P_1+1\)
Thật vậy, ta có:
\(k.P_k+\left(k-1\right)P_{k-1}+...+P_1+1=k.P_k+P_k\)
\(=\left(k+1\right)P_k=P_{k+1}\) (đpcm)
\(\left\{{}\begin{matrix}SM\perp\left(MNPQ\right)\Rightarrow SM\perp PN\\PN\perp MN\end{matrix}\right.\) \(\Rightarrow PN\perp\left(SMN\right)\)
Lại có \(\left\{{}\begin{matrix}PN\perp\left(SMN\right)\\SN\in\left(SMN\right)\end{matrix}\right.\) \(\Rightarrow PN\perp SN\)
Tham Khảo:
a) Gọi d là công sai của cấp số cộng (un) ,d ≠ 0. Khi đó với mọi n ∈ N*, ta có:
Pn + 1 - pn = 4(un+ 1 - un) = 4d (không đổi )
Vậy (pn) là cấp số cộng
Sn + 1 - Sn = (un+1 - un)(un+1 + un) = d(un+1 + un)
không là hằng số( do d ≠ 0)
Vậy (Sn)không là cấp số cộng.
b)
a) Vì Cn là nửa đường tròn đường kính \(\frac{{AB}}{{{2^n}}}\) nên ta có \({p_n} = \frac{1}{2}{.2^n}.\frac{{AB}}{{{2^n}}}.\pi = {2^n}.\frac{R}{{{2^n}}}.\pi = \pi R\)
Đường kính \(\frac{{AB}}{{{2^n}}} = \frac{{2R}}{{{2^n}}}\) nên bánh kính \(\frac{R}{{{2^n}}}\)
\({S_n} = {2^n}.{\left( {\frac{R}{{{2^n}}}} \right)^2}.\frac{\pi }{2} = \frac{{\pi {R^2}}}{2}.\frac{1}{{{2^n}}} = \frac{{\pi {R^2}}}{{{2^{n + 1}}}}\)
b) \(\begin{array}{l}\lim {p_n} = \lim \left( {\pi R} \right) = \pi R\\\lim {S_n} = \lim \frac{{\pi {R^2}}}{{{2^{n + 1}}}} = \lim \left[ {\frac{{\pi {R^2}}}{2}.{{\left( {\frac{1}{2}} \right)}^n}} \right] = \lim \frac{{\pi {R^2}}}{2}.\lim {\left( {\frac{1}{2}} \right)^n} = 0\end{array}\)