Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong 3 số `2n+1, 2n+2, 2n+3` luôn có một số chia hết cho 3
\(\Rightarrow\left(2n+1\right)\left(2n+2\right)\left(2n+3\right)⋮3\) (1)
Xét \(n⋮2\)
Có: \(2n⋮2,2⋮2\Rightarrow2n+2⋮2\)
\(\Rightarrow\left(2n+1\right)\left(2n+2\right)\left(2n+3\right)⋮2\) (2)
Xét \(n⋮̸2\)
Có: \(2n⋮2\left(dư1\right),1⋮2\left(dư1\right)\Rightarrow2n+1⋮2\)
\(\Rightarrow\left(2n+1\right)\left(2n+2\right)\left(2n+3\right)⋮2\) (3)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrowđpcm\)
b.
36 chia hết cho 2n+9
=>2n+9 thuộc Ư(36)
=>2n+9 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36}
=>2n thuộc {-8;-9;-7;-11;-6;-12;-5;-13;-3;-15;0;-18;3;-21;9;-27;27;-45}
=>n thuộc {-4;-3;-6;0;-9}
\(2n-1⋮n+1\)
\(\Rightarrow2n+2-3⋮n+1\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n+1=1;-1;3;-3\)
\(\Rightarrow n=0;-2;2;-4\)
mình xin lỗi mình đánh máy sai câu hỏi như này
A) n+7 chia hết cho n+2 ( với n khác 2 )
B) 3n+1 chia hết cho 2n+3
11n + 2 + 122n + 1 = 121 . 11n + 12 . 144n
=(133 – 12) . 11n + 12 . 144n = 133 . 11n + (144n – 11n) . 12
Ta có: 133 . 11n chia hết 133; 144n – 11n chia hết (144 – 11)
\Rightarrow⇒ 144n – 11n chia hết 133 \Rightarrow⇒ 11n + 2 + 122n + 1 chia hết cho 133
chúc bạn học tốt !!!
ta có : \(6n-3=3\times\left(2n-2\right)+3\) chia hết cho 2n-2 khi
3 chia hết cho 2n-2
mà 2n-2 là số chẵn nên 3 không thể chia hết cho 2n-2 vậy không tồn tại số tự nhiên thỏa mãn
2n + 6 = 2n - 2 + 8
Để (2n + 6) ⋮ (2n - 2) thì 8 ⋮ (2n - 2)
⇒ 2n - 2 ∈ Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
⇒ 2n ∈{-6; -2; 0; 1; 3; 4; 6; 10}
⇒ n ∈ {-3; -1; 0; 1/2; 3/2; 2; 3; 5}
Cảm ơn nha!!!💐🌷🌷🌷