K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi d=ƯCLN(2n+2021;2n+2023)

=>2n+2023-2n-2021 chia hết cho d

=>2 chia hết cho d

mà 2n+2021 ko chia hết cho 2

nên d=1

=>ĐPCM

12 tháng 1 2023

Gọi d=ƯCLN(2n+2021;2n+2023)

=>2n+2023-2n-2021 chia hết cho d

=>2 chia hết cho d

mà 2n+2021 ko chia hết cho 2

nên d=1

=>ĐPCM

 

a) Gọi \(d\inƯC\left(n+1;2n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Leftrightarrow2n+2-2n-3⋮d\)

\(\Leftrightarrow-1⋮d\)

\(\Leftrightarrow d\inƯ\left(-1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯC\left(n+1;2n+3\right)=\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(n+1;2n+3\right)=1\)

hay n+1 và 2n+3 là cặp số nguyên tố cùng nhau(đpcm)

20 tháng 10 2023

Mình mẫu đầu với cuối nhé:

a)  Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)  

\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)

\(\Rightarrow3⋮d\)

 \(\Rightarrow d\in\left\{1,3\right\}\)

Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)

Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.

 e) \(ƯCLN\left(2n+3,3n+5\right)=d\)

 \(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)

Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.

22 tháng 12 2019

mk chắc chắn 100% là mk ko bt

a) Gọi \(\:ƯCLN\) của \(n+2;n+3\) là d \(\Rightarrow n+2⋮d;n+3⋮d\)

\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1;-1\) 

\(\Rightarrow n+2;n+3NTCN\)

b) Gọi \(\:ƯCLN\) \(2n+3;3n+5\) là d \(\Rightarrow2n+3⋮d;3n+5⋮d\)

\(\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\) và \(2\left(3n+5\right)⋮d\Rightarrow6n+10⋮d\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow2n+3;3n+5NTCN\)

14 tháng 11 2017

a)  Gọi ƯCLN(3n+1,6n+1)=d

=> 3n+1 và 6n+1 chia hết chưa d

=> 2(3n+1) và 6n+1 chia hết chưa d

=>6n+2 và 6n+1 chia hết cho d

=>(6n+2)-(6n+1)=1 chia hết cho d

=>d=1

=> 3n+1 và 6n+1 nguyên tố cùng nhau

b, Gọi ƯCLN(2n+3,3n+4)=d

=>2n+3 và 3n+4 chia hết cho d

=>3(2n+3) và 2(3n+4) chia hết cho d

=>6n+9 và 6n+8 chia hết cho d

=>(6n+9)-(6n+8)=1 chia hết cho d

=>d=1

=>2n+3 và 3n+4 nguyên tố cùng nhau

5 tháng 1 2017

mk lấy ví dụ n =1; 2n+5 = 2x1+5= 7; 3n+7=3x1+7 = 10;

          ƯCLN (7;10) = 1

5 tháng 1 2017

hình như bạn làm sai rồi

12 tháng 11 2019

Ok để mình giúp bạn

Gọi d là ước chung lớn nhất của (2n+1, 2n+3)

=> 2n+1 chia hết cho d

2n+3 cũng chia hết cho d

Trừ đi => 2 chia hết cho d

=> d =1 hoặc 2

Nếu d=2 => 2n+1; 2n+3 chia hết cho 2

=> Vô lí do 2n+1; 2n+3 là 2 số lẻ

=> d=1

=> (2n+1; 2n+3)=1

=> 2n+1 và 2n+3 nguyên tố cùng nhau.

12 tháng 11 2019

GỌI d LÀ UCLN CỦA (2n+1;2n+3)(d\(\in\)N*)

=>\(2n+1⋮d\)và\(2n+3⋮d\)

=>\(\left(2n+3-2n-1\right)⋮d\)

=>\(2⋮d\)

mà \(2n+1\)lẻ => d lẻ => d=1

=>\(2n+1\)và\(2n+3\)là 2 số nguyên tố cùng nhau

12 tháng 10 2023

Gọi \(d=\left(2n+9;n+5\right)\)

\(\left\{{}\begin{matrix}2n+9⋮d\\n+5⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2n+9⋮d\\2n+10⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+10\right)-\left(2n+9\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

=> 2n+9 và n+5 nguyên tố cùng nhau

16 tháng 12 2021

ko biet

25 tháng 12 2021

Vì 2n+1 là số lẻ

và 4n+4 là số chẵn

nên 2n+1 và 4n+4 là hai số nguyên tố cùng nhau