Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dạ mình cám ơn ạ nma cho mình hỏi chút cái chỗ 2x1+x2=3 và x1+x2= gì v ạ
\(\hept{\begin{cases}2m^2x+3\left(m-1\right)y=3\\m\left(x+y\right)-2y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2m^2x+3\left(m-1\right)y=3\\y\left(m-2\right)=2-mx\end{cases}}\)
Với m = 2 thì hệ trở thành
\(\hept{\begin{cases}8x+3y=3\\2-2x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=\frac{-5}{3}\end{cases}}\)
Với \(m\ne2\)thì
\(\Leftrightarrow\hept{\begin{cases}2m^2x+3\left(m-1\right).\frac{2-mx}{\left(m-2\right)}=3\left(1\right)\\y=\frac{2-mx}{\left(m-2\right)}\left(2\right)\end{cases}}\)
Từ (1) ta có
\(\left(2m^3-7m^2+3m\right)x=-3m\)
Với \(\hept{\begin{cases}2m^3-7m^2+3m=0\\-3m=0\end{cases}}\Leftrightarrow m=0\)
Thì phương trình có vô số nghiệm (x,y) thõa y = - 1; x tùy ý
Với \(\hept{\begin{cases}2m^3-7m^2+3m=0\\-3m\ne0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{2}\\m=3\end{cases}}\)
Thì hệ pt vô nghiệm
Với \(\hept{\begin{cases}2m^3-7m^2+3m\ne0\\-3m\ne0\end{cases}}\Leftrightarrow m\ne0;0,5;3\)
Thì hệ có nghiệm là
\(\hept{\begin{cases}x=\frac{3-3\left(m-1\right).\frac{2-mx}{\left(m-2\right)}}{2m^2}\\y=\frac{2-mx}{\left(m-2\right)}\end{cases}}\)
\(\hept{\begin{cases}2m^2x+3\left(m-1\right)y=3\\m\left(x+y\right)-2y=2\end{cases}}\)
Với m = 2 thì e giải nhé
Với m khác 2 thì
\(\Leftrightarrow\hept{\begin{cases}2m^2x+3\left(m-1\right).\frac{2-mx}{m-2}=3\left(1\right)\\y=\frac{2-mx}{m-2}\left(2\right)\end{cases}}\)
Xét (1) quy đồng rồi chuyển cái có x sang 1 vế phần còn lại sang 1 vế. Rồi biện luận nhé
\(a,\Delta=4\left(m-1\right)^2-4\left(-2m-3\right)=4m^2-8m+4+8m+12\\ \Delta=4m^2+16>0\left(đpcm\right)\\ b,\Delta=\left(2m-1\right)^2-4\left(2m-2\right)=4m^2-4m+1-8m+8\\ \Delta=4m^2-12m+9=\left(2m-3\right)^2\ge0\left(đpcm\right)\\ c,Sửa:x^2-2\left(m+1\right)x+2m-2=0\\ \Delta=4\left(m+1\right)^2-4\left(2m-2\right)=4m^2+8m+4-8m+8\\ \Delta=4m^2+12>0\left(đpcm\right)\\ d,\Delta=4\left(m+1\right)^2-4\cdot2m=4m^2+8m+4-8m\\ \Delta=4m^2+4>0\left(đpcm\right)\\ e,\Delta=4m^2-4\left(m+7\right)=4m^2-4m+7=\left(2m-1\right)^2+6>0\left(đpcm\right)\\ f,\Delta=4\left(m-1\right)^2-4\left(-3-m\right)=4m^2-8m+4+12+4m\\ \Delta=4m^2-4m+16=\left(2m-1\right)^2+15>0\left(đpcm\right)\)
Ghi sai đề đúng ko bạn? Bài này đúng hình như là chứng minh nó có nghiệm hay vô nghiệm chứ???
\(x^2-2\left(m+1\right)x+2m+10=10\)
\(\Leftrightarrow x^2-\left(2m+2\right)x+2m=0\)
\(\text{Δ}=\left(2m+2\right)^2-4\cdot2m=4m^2+8m+4-8m=4m^2+4>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\)
- Với \(m^2-9< 0\Leftrightarrow-3< m< 3\) pt vô nghiệm
- Với \(m^2-9=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-3\end{matrix}\right.\) pt có nghiệm kép tương ứng \(\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
- Với \(m^2-9>0\Rightarrow\left[{}\begin{matrix}m>3\\m< -3\end{matrix}\right.\) pt có 2 nghiệm pb:
\(\left\{{}\begin{matrix}x_1=m+1-\sqrt{m^2-9}\\x_2=m+1+\sqrt{m^2-9}\end{matrix}\right.\)
Ta có : \(\Delta^'=\left[-\left(m+1\right)\right]^2-1.\left(m^2+2m\right)\)
\(\Delta^'=m^2+2m+1-m^2-2m\)
\(\Delta^'=1>0\)
=> phương trình luôn có hai nghiệm phân biệt
Theo hệ thức vi - ét ta có : \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\left(1\right)\\x_1x_2=m^2+2m\left(2\right)\end{cases}}\)
Theo bài ra ta có : \(x_1^3-x_2^3=8\)
\(\Rightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=8\left(3\right)\)
Thay \(\left(1\right)\)và \(\left(2\right)\)vào \(\left(3\right)\)
Ta được : \(\left(2m+2\right)^3-3.\left(m^2+2m\right).\left(2m+2\right)=8\)
\(\Rightarrow\left(2m\right)^3+3.4m^2.2+3.2m.4+8-6m^3-18m^2-12m=8\)
\(\Rightarrow2m^3+6m^2+12m=0\)
\(\Rightarrow2m.\left(m^2+3m+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2m=0\\m^2+3m+6=0\end{cases}}\)
\(\Leftrightarrow m=0\)
Vậy với m = 0 thì pt có 2 nghiện thõa mãn x13 - x23 = 8
Dùng lớp 8 giải
\(\Leftrightarrow x^2-2\left(m+1\right)x+\left(m+1\right)^2=1\) thêm 1 hai vế
\(\left[x-\left(m+1\right)\right]^2=1\)\(\Rightarrow x_1=m+2;x_2=m\)
\(x_1^3-x_2^3=8\)
Do x1, x2 tự đặt phải phân ra
TH1:(m+2)^3-m^3=8
TH2: m^3-(m+2)^3=8
\(TH1:\Leftrightarrow m^3=\left(m+2\right)^3-2^3=m^3+6m\left(m+2\right)\)
\(\Leftrightarrow6m\left(m+2\right)=0\Rightarrow m=0.hoac:;m=-2\)
\(TH2:-2^8-3m\left(m+2\right)=2^3\Leftrightarrow3m^2+6m+16=0\) vô nghiệm
=> đề thiếu dự kiện x1>x2
a) Bạn tự giải
b) Ta có: \(\Delta'=m^2-5\)
Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\) \(\Leftrightarrow\left[{}\begin{matrix}m>\sqrt{5}\\m< -\sqrt{5}\end{matrix}\right.\)
Vậy ...
a) Thay m=2 vào pt, ta được:
\(x^2-2\left(2-1\right)x-2\cdot2+6=0\)
\(\Leftrightarrow x^2-2x+2=0\)
\(\Leftrightarrow x^2-2x+1+1=0\)
\(\Leftrightarrow\left(x-1\right)^2+1=0\)(Vô lý)
Vậy: Khi m=2 thì phương trình vô nghiệm
b) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-2m+6\right)\)
\(=\left(2m-2\right)^2-4\left(-2m+6\right)\)
\(=4m^2-8m+4+8m-24\)
\(=4m^2-20\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow4m^2-20>0\)
\(\Leftrightarrow4m^2>20\)
\(\Leftrightarrow m^2>5\)
\(\Leftrightarrow\left[{}\begin{matrix}m< -\sqrt{5}\\m>\sqrt{5}\end{matrix}\right.\)
\(\dfrac{2m+3}{m+2}-\dfrac{m}{m+2}=3\) (m \(\ne\) -2)
\(\Leftrightarrow\) \(\dfrac{m+3}{m+2}=3\)
\(\Leftrightarrow\) m + 3 = 3(m + 2)
\(\Leftrightarrow\) m + 3 = 3m + 6
\(\Leftrightarrow\) 2m = -3
\(\Leftrightarrow\) m = \(\dfrac{-3}{2}\) (TM)
Vậy ...
Chúc bn học tốt!