Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2m + 2015 = |n - 2016| + n - 2016
=> Ta có 2 trường hợp:
+/ 2m + 2015 = (n - 2016) + n - 2016
=> 2m + 2015 = n - 2016 + n - 2016
=> 2m + 2015 = 2n - 4032 (1)
Ta có 2n là số chẵn, -4032 cũng là số chẵn (2)
Từ (1) và (2) => 2m + 2015 là số chẵn
Mà 2015 là số lẻ nên 2m là số lẻ => m = 0
Thay m = 0 vào biểu thức 2m + 2015 = 2n - 4032, ta có:
20 + 2015 = 2n - 4032
=> 1 + 2015 = 2n - 4032
=> 1 + 2015 + 4032 = 2n
=> 6048 = 2n
=> 3024 = n hay n = 3024
+/ 2m + 2015 = -(n - 2016) + n - 2016
=> 2m + 2015 = -n + 2016 + n - 2016
=> 2m + 2015 = 0
=> 2m = -2015
\(\Rightarrow2^m\notin\varnothing\Rightarrow m\notin\varnothing\)
Vậy m = 0 và n = 3024
Ta thấy /n-2016/ + n - 2016 là số chẵn => 2^m + 2015 là số chẵn mà 2015 là số lẻ => 2^m lẻ=> m = 0
=> 2016= /n-2016/+n-2016
tới dây bn tự làm nhé
Nhận xét:
+) Với x \(\geq\) 0 thì | x | + x = 2x
+) Với x < 0 thì | x | + x = 0
Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z
Áp dụng nhận xét trên thì :
| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z
\(\implies\) 2m + 2015 là số chẵn
\(\implies\) 2m là số lẻ
\(\implies\) m = 0
Khi đó:
| n - 2016 | + n - 2016 = 2016
+) Nếu n < 2016 ta được:
- ( n - 2016 ) + n - 2016 =2016
\(\implies\) 0 = 2016
\(\implies\) vô lí
\(\implies\) loại
+) Nếu n \(\geq\) 2016 ta được :
( n - 2016 ) + n - 2016 = 2016
\(\implies\) n - 2016 + n - 2016 = 2016
\(\implies\) 2n - 2 . 2016 = 2016
\(\implies\) 2 ( n - 2016 ) = 2016
\(\implies\) n - 2016 = 2016 : 2
\(\implies\) n - 2016 = 1008
\(\implies\) n = 1008 + 2016
\(\implies\) n = 3024
\(\implies\) thỏa mãn
Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }
Sửa đề:CM:\(\left(p-m\right)^2=4\left(m-n\right)\left(n-p\right)\)
Ta có:\(\frac{m}{2014}=\frac{n}{2015}=\frac{p}{2016}=\frac{p-m}{2016-2014}=\frac{p-m}{2}=\frac{m-n}{2014-2015}\)=
\(=\frac{m-n}{-1}=\frac{n-p}{2014-2016}=\frac{n-p}{-1}\)
\(\Rightarrow\frac{\left(p-m\right)^2}{4}=\frac{\left(m-n\right).\left(n-p\right)}{\left(-1\right).\left(-1\right)}\)
\(\Rightarrow\frac{\left(p-m\right)^2}{4}=\frac{\left(m-n\right)\left(n-p\right)}{1}\)
\(\Rightarrow\left(p-m\right)^2=4\left(m-n\right)\left(n-p\right)\)