K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2019

\( 2)2\sqrt {\dfrac{{16}}{3}} - 3\sqrt {\dfrac{1}{{27}}} - 6\sqrt {\dfrac{4}{{75}}} \\ = 2.\dfrac{4}{{\sqrt 3 }} - 3.\dfrac{1}{{\sqrt {27} }} - 6\dfrac{2}{{\sqrt {75} }}\\ = \dfrac{8}{{\sqrt 3 }} - \dfrac{3}{{3\sqrt 3 }} - \dfrac{{12}}{{5\sqrt 2 }}\\ = \dfrac{{8\sqrt 3 }}{3} - \dfrac{{\sqrt 3 }}{3} - \dfrac{{4\sqrt 3 }}{5}\\ = \dfrac{{23\sqrt 3 }}{{15}}\\ 3)2\sqrt {27} - 6\sqrt {\dfrac{4}{3}} + \dfrac{3}{5}\sqrt {75} \\ = 6\sqrt 3 - \dfrac{{12}}{{\sqrt 3 }} + 3\sqrt 3 \\ = 9\sqrt 3 - 4\sqrt 3 \\ = 5\sqrt 3 \)

28 tháng 7 2019

có làm được câu 4 không cậu ơi?

1) Ta có: \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\left(\sqrt{2}+\sqrt{3}+2\right)}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)\left(1+\sqrt{2}\right)}{\left(\sqrt{2}+\sqrt{3}+2\right)}\)

\(=1+\sqrt{2}\)

2) Ta có: \(2\sqrt{27}-6\sqrt{\frac{4}{3}}+\frac{3}{5}\sqrt{75}\)

\(=\sqrt{108}-\sqrt{36\cdot\frac{4}{3}}+\sqrt{75\cdot\frac{9}{25}}\)

\(=\sqrt{108}-\sqrt{48}+\sqrt{27}\)

\(=\sqrt{3}\left(6-4+3\right)\)

\(=5\sqrt{3}\)

3) Sửa đề: \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{192}\)

Ta có: \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{192}\)

\(=\sqrt{2}\cdot\sqrt{4}\cdot\sqrt{3}-10\sqrt{4}\cdot\sqrt{3}+16\cdot\sqrt{4}\cdot\sqrt{3}\)

\(=\sqrt{2}\cdot\sqrt{12}-10\sqrt{12}+16\sqrt{12}\)

\(=\sqrt{12}\left(\sqrt{2}-10+16\right)\)

\(=2\sqrt{3}\left(\sqrt{2}-6\right)\)

\(=2\sqrt{6}-12\sqrt{3}\)

4) Ta có: \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)

\(=\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\frac{\sqrt{12}}{6}-\frac{2\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\)

\(=\frac{6\left(2-\sqrt{3}\right)+2\sqrt{3}-6+2\sqrt{3}}{6}\)

\(=\frac{12-6\sqrt{3}+2\sqrt{3}-6+2\sqrt{3}}{6}\)

\(=\frac{6-2\sqrt{3}}{6}\)

\(=\frac{2\sqrt{3}\left(\sqrt{3}-1\right)}{2\sqrt{3}\cdot\sqrt{3}}\)

\(=\frac{\sqrt{3}-1}{\sqrt{3}}\)

5) Ta có: \(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}\)

\(=\frac{\sqrt{3}\left(2+5+3\right)}{\sqrt{15}}=\frac{10}{\sqrt{5}}=2\sqrt{5}\)

6) Ta có: \(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)

\(=\sqrt{48\cdot\frac{1}{4}}-\sqrt{75\cdot4}-\sqrt{3}+5\sqrt{\frac{4}{3}}\)

\(=\sqrt{12}-\sqrt{300}-\sqrt{3}+\sqrt{25\cdot\frac{4}{3}}\)

\(=\sqrt{12}-\sqrt{300}-\sqrt{3}+\sqrt{\frac{100}{3}}\)

\(=\sqrt{3}\left(2-10-1+\frac{10}{3}\right)\)

\(=-\frac{17\sqrt{3}}{3}=-\frac{17}{\sqrt{3}}\)

12 tháng 4 2020

Cảm ơn bạn nha

9 tháng 10 2017

1) \(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\)

\(=2\sqrt{5}-\sqrt{5^2.5}-\sqrt{4^2.5}+\sqrt{11^2.5}\)

\(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}\)

\(=4\sqrt{5}\)

2) \(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{15-\sqrt{6^2.6}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{6}\right)^2-6\sqrt{6}+3^2}+\sqrt{\left(2\sqrt{6}\right)^2-12\sqrt{6}+3^2}\)

\(=\sqrt{\left(\sqrt{6}-3\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=\left|\sqrt{6}-3\right|+\left|2\sqrt{6}-3\right|\)

\(=3-\sqrt{6}+2\sqrt{6}-3\)  ( vi \(\sqrt{6}-3< 0\))

\(=\sqrt{6}\)

5) \(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\)

\(=2\frac{4}{\sqrt{3}}-3.\frac{1}{3}-6\sqrt{\frac{2^2}{3.5^2}}\)

\(=\frac{8\sqrt{3}}{3}-1-6.\frac{2}{5}.\sqrt{\frac{1}{3}}\)

\(=8\frac{\sqrt{3}}{3}-1-\frac{12}{5}.\frac{\sqrt{3}}{3}\)

\(=\frac{28}{5}.\frac{\sqrt{3}}{3}-1\)

7 tháng 8 2018

 Báo cáo sai phạm

1) 2√5−√125−√80+√605

=2√5−√52.5−√42.5+√112.5

=2√5−5√5−4√5+11√5

=4√5

2) √15−√216+√33−12√6

=√15−√62.6+√33−12√6

=√15−6√6+√33−12√6

=√(√6)2−6√6+32+√(2√6)2−12√6+32

=√(√6−3)2+√(2√6−3)2

=|√6−3|+|2√6−3|

=3−√6+2√6−3  ( vi √6−3<0)

=√6

5) 2√163 −3√127 −6√475 

=24√3 −3.13 −6√223.52 

=8√33 −1−6.25 .√13 

=8√33 −1−125 .√33 

=285 .√33 −1

7 tháng 9 2019

22) \(\frac{1}{\sqrt{5}+\sqrt{2}}+\frac{1}{\sqrt{5}-\sqrt{2}}\)

\(=\frac{\left(\sqrt{5}-\sqrt{2}\right)+\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}\)

\(=\frac{2\sqrt{5}}{\sqrt{5^2}-\sqrt{2^2}}\)

\(=\frac{2\sqrt{5}}{5-2}=\frac{2\sqrt{5}}{3}\)