Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/7 của 63/91
=63/91. 2/7
=18/91
chú thích : / là phần nha
a) \(\dfrac{1}{3}\)của 45 = \(45.\dfrac{1}{3}=15\)
b) \(\dfrac{2}{7}\)của \(\dfrac{63}{91}\)= \(\dfrac{63}{91}.\dfrac{2}{7}=\dfrac{18}{91}\)
c) 23% của 200 = 200 . \(\dfrac{23}{100}\)= 46
d) \(1\dfrac{2}{3}\)của \(3\dfrac{1}{4}\)= \(3\dfrac{1}{4}.1\dfrac{2}{3}=\dfrac{65}{12}\)
\(D=\dfrac{7}{15}+\dfrac{7}{35}+\dfrac{7}{63}+\dfrac{7}{99}+\dfrac{7}{143}\)
\(=7.\left(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\right)\)
\(=7.\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\right)\)
\(=7.\dfrac{1}{2}.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\right)\)
\(=\dfrac{7}{2}.\left(\dfrac{1}{5}-\dfrac{1}{13}\right)\)
\(=\dfrac{7}{2}.\dfrac{8}{65}=\dfrac{28}{65}\)
D = 7\(\left(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\right)\)
= 7\(\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\right)\)
= 7\(\left[\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\right):2\right]\)
= 7\(\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\right)\): 2
= 7\(\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\) : 2
= 7 . \(\dfrac{10}{39}\) : 2 = \(\dfrac{70}{78}\) = \(\dfrac{35}{39}\)
a)\(=\dfrac{211}{180}\)
b)\(=\dfrac{5}{39}\)
c)=\(=-\dfrac{65}{168}\)
đây là tính nhanh à nếu tính bình thường thì tính may tính là ra
a) 17/23 . 8/16 . 23/17. (-80) . 3/4
= (17/23 . 23/17) . (8/16 . 3/4) . (-80)
= 1 . 3/8 . (-80)
= 3/8 . (-80)
= -30
b) 5/11 . 18/29 - 5/11 . 8/29 + 5/11 . 19/29
= 5/11 . (18/29 - 8/29 + 19/29)
= 5/11 . 1
= 5/11
c)(13/23 + 1313/2323 - 131313/232323).(1/3+1/4 -7/12)
= (13/23 + 1313/2323 - 131313/232323).0
= 0
d) 12/2x2 . 22/2x3 . 32/3x4 . 42/4x5 . 52/5x6 . 62/6x7 . 72/7x8 . 82/8x9 . 92/9x10
= 1/2 . 2/3 . 3/4 . 4/5 . 5/6 . 6/7 . 7/8 . 8/9 .9/10
= 1/10
Khó nhìn quá. Bạn thông cảm nhé!
Để chứng minh 3<S<6, ta cần tính giá trị của biểu thức S và thấy xem nó có nằm trong khoảng (3, 6) hay không.
Đầu tiên, ta tính tổng S bằng cách đặt S bên cạnh tổng harmonic thứ 63, rồi trừ đi tổng harmonic thứ 62:
S = 1/1 + 1/2 + 1/3 + ... + 1/63 S - 1/2 = 1/2 + 1/3 + ... + 1/63
Lặp lại phương pháp trên đối với S - 1/2, ta có:
S - 1/2 - 1/3 = 1/3 + ... + 1/63
Cứ lặp lại phương pháp trên đến khi ta được:
S - 1/2 - 1/3 - ... - 1/62 = 1/63
Tổng quát lại, ta có:
S - 1/2 - 1/3 - ... - 1/62 - 1/63 = 0
Từ đây suy ra:
3/2 < 1/2 + 1/3 + ... + 1/62 + 1/63 < 1 + 1/2 + 1/3 + ... + 1/62 < 6
Vì vậy, ta có:
3 < S < 6
Vậy, ta đã chứng minh được rằng 3<S<6.
Gọi \(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{63}\) là \(S\)
\(S=1+\dfrac{1}{2}+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{17}+\dfrac{1}{18}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{33}+\dfrac{1}{34}+...+\dfrac{1}{63}+\dfrac{1}{64}\right)-\dfrac{1}{64}\\ =\left(1-\dfrac{1}{64}\right)+\dfrac{1}{2}+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{17}+\dfrac{1}{18}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{33}+\dfrac{1}{34}+...+\dfrac{1}{63}+\dfrac{1}{64}\right)\)
Ta nhận thấy:
\(\dfrac{1}{3}\) lớn hơn \(\dfrac{1}{4}\)
\(\dfrac{1}{5},\dfrac{1}{6},\dfrac{1}{7}\) đều lớn hơn \(\dfrac{1}{8}\)
\(\dfrac{1}{9},\dfrac{1}{10},...,\dfrac{1}{15}\) đều lớn hơn \(\dfrac{1}{16}\)
\(\dfrac{1}{17},\dfrac{1}{18},...,\dfrac{1}{31}\) đều lớn hơn \(\dfrac{1}{32}\)
\(\dfrac{1}{33},\dfrac{1}{34},...,\dfrac{1}{63}\) đều lớn hơn \(\dfrac{1}{64}\)
\(\Rightarrow S>\left(1-\dfrac{1}{64}\right)+\dfrac{1}{2}+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{32}+\dfrac{1}{32}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{64}+\dfrac{1}{64}+...+\dfrac{1}{64}\right)\\ S>\left(1-\dfrac{1}{64}\right)+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}\\ S>\dfrac{63}{64}+\left(\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}\right)\\ S>\dfrac{63}{64}+3>3\)Mặt khác ta có:
\(S=1+\left(\dfrac{1}{2}+\dfrac{1}{3}\right)+\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}\right)+\left(\dfrac{1}{8}+\dfrac{1}{9}+...+\dfrac{1}{15}\right)+\left(\dfrac{1}{16}+\dfrac{1}{17}+...+\dfrac{1}{31}\right)+\left(\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{63}\right)\)
\(\dfrac{1}{3}\) bé hơn \(\dfrac{1}{2}\)
\(\dfrac{1}{5},\dfrac{1}{6},\dfrac{1}{7}\) đều bé hơn \(\dfrac{1}{4}\)
\(\dfrac{1}{9},\dfrac{1}{10},...,\dfrac{1}{15}\) đều bé hơn \(\dfrac{1}{8}\)
\(\dfrac{1}{17},\dfrac{1}{18},...,\dfrac{1}{31}\) đều bé hơn \(\dfrac{1}{16}\)
\(\dfrac{1}{33},\dfrac{1}{34},...,\dfrac{1}{63}\) đều bé hơn \(\dfrac{1}{32}\)
\(\Rightarrow S< 1+\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{8}+\dfrac{1}{8}+...+\dfrac{1}{8}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{32}+\dfrac{1}{32}+...+\dfrac{1}{32}\right)\\ S< 1+1+1+1+1+1\\ S< 6\)
a) \(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}+\dfrac{1}{195}\)
\(=\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}+\dfrac{1}{13.15}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-.....+\dfrac{1}{13}-\dfrac{1}{15}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{15}\right)\)
\(=\dfrac{1}{2}.\dfrac{4}{15}=\dfrac{2}{15}\)
b) \(\dfrac{4}{9}:\left(-\dfrac{1}{7}\right)+6\dfrac{5}{9}:\left(-\dfrac{1}{7}\right)\)
\(=\dfrac{4}{9}.\left(-7\right)+\dfrac{59}{9}\left(-7\right)\)
\(=-7\left(\dfrac{4}{9}+\dfrac{59}{9}\right)\)
\(=-7.7=-49\)
c) \(\left(3\dfrac{2}{5}-2\dfrac{2}{5}\right).\left(-\dfrac{5}{3}\right)+3.\left(2\dfrac{1}{2}:\dfrac{1}{2}\right)\)
\(=\left(\dfrac{17}{5}-\dfrac{12}{5}\right).\left(-\dfrac{5}{3}\right)+3.5\)
\(=-\dfrac{5}{3}+15=13\dfrac{1}{3}\)
d) \(1\dfrac{13}{5}.\left(0,5\right)^2.3+\left(\dfrac{8}{15}+1\dfrac{19}{60}\right):1\dfrac{23}{24}\)
\(=\dfrac{2}{7}+78\dfrac{8}{15}:\dfrac{47}{24}\)
( bạn tự tính nốt câu này nha ! )
\(2\dfrac{3}{7}.63=152\)
152