K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 6 2020

\(2cos\left(\frac{\pi}{4}+x\right)cos\left(\frac{\pi}{4}-x\right)=cos\left(\frac{\pi}{2}\right)+cos2x=0+cos2x=cos2x\)

NV
17 tháng 4 2019

\(A=cosa\left(sinb.cosc-cosb.sinc\right)+cosb\left(sinc.cosa-cosc.sina\right)+cosc\left(sinacosb-cosasinb\right)\)

\(A=cosasinbcosc-cosacosbsinc+cosacosbsinc-sinacosbcosc+sinacosbcosc-cosasinbcosc\)

\(A=0\)

\(B=sin^2x+\frac{1}{2}\left(cos\frac{2\pi}{3}+cos2x\right)\)

\(B=\frac{1}{2}-\frac{1}{2}cos2x-\frac{1}{4}+\frac{1}{2}cos2x\)

\(B=\frac{1}{4}\)

\(C=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}+2x\right)+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}-2x\right)\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x-\frac{1}{2}\left(cos\left(\frac{4\pi}{3}+2x\right)+cos\left(\frac{4\pi}{3}-2x\right)\right)\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x-cos\frac{4\pi}{3}.cos2x\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x\)

\(C=\frac{3}{2}\)

\(D=\frac{1}{2}\left[\sqrt{2}sin\left(\frac{\pi}{4}+x\right)\right]^2-sin^2x-sinx.\sqrt{2}cos\left(\frac{\pi}{4}+x\right)\)

\(D=\frac{1}{2}\left(sinx+cosx\right)^2-sin^2x-sinx\left(sinx-cosx\right)\)

\(D=\frac{1}{2}\left(1+2sinx.cosx\right)-sin^2x-sin^2x+sinx.cosx\)

\(D=\frac{1}{2}+sinxcosx+sinxcosx=\frac{1}{2}+sin2x\)

30 tháng 4 2019

Góc độ cao của thang dựa vào tường là 60º và chân thang cách tường 4,6 m. Chiều dài của thang là

18 tháng 6 2020

\(P=\sin^2x+cos\left(\frac{\pi}{3}-x\right)cos\left(\frac{\pi}{3}+x\right)\)

\(=\sin^2x+cos^2\left(\frac{\pi}{3}\right)-sin^2x\)

\(=\cos^2\left(\frac{\pi}{3}\right)=\frac{1}{4}\)

=> P không phụ thuộc vào x

NV
14 tháng 5 2019

\(=cos\left(x-\frac{\pi}{3}\right)cos\left(x+\frac{\pi}{4}\right)+sin\left(\frac{\pi}{2}-x-\frac{\pi}{6}\right)sin\left(\frac{\pi}{2}-x-\frac{3\pi}{4}\right)\)

\(=cos\left(x-\frac{\pi}{3}\right)cos\left(x+\frac{\pi}{4}\right)+sin\left(\frac{\pi}{3}-x\right)sin\left(-x-\frac{\pi}{4}\right)\)

\(=cos\left(x-\frac{\pi}{3}\right)cos\left(x+\frac{\pi}{4}\right)+sin\left(x-\frac{\pi}{3}\right)sin\left(x+\frac{\pi}{4}\right)\)

\(=cos\left(x-\frac{\pi}{3}-x-\frac{\pi}{4}\right)=cos\left(-\frac{7\pi}{12}\right)=cos\frac{7\pi}{12}=\frac{\sqrt{2}-\sqrt{6}}{4}\)

NV
14 tháng 4 2020

\(cos\left(2x+\frac{\pi}{6}\right)cos\left(2x-\frac{\pi}{6}\right)=\frac{1}{2}\left(cos4x+cos\frac{\pi}{3}\right)=\frac{1}{2}\left(cos4x+\frac{1}{2}\right)\)

\(sin\left(x+\frac{\pi}{6}\right)sin\left(x-\frac{\pi}{6}\right)=\frac{1}{2}\left(cos\frac{\pi}{3}-cos2x\right)=\frac{1}{2}\left(\frac{1}{2}-cos2x\right)\)

\(\Rightarrow C=\frac{1}{2}sinx.cos4x+\frac{1}{4}sinx+\frac{1}{4}sin3x-\frac{1}{2}sin3x.cos2x\)

\(=\frac{1}{4}sin5x-\frac{1}{4}sin3x+\frac{1}{4}sinx+\frac{1}{4}sin3x-\frac{1}{4}sin5x+\frac{1}{4}sinx\)

\(=\frac{1}{2}sinx\)

NV
25 tháng 6 2020

Ủa thì \(cos\frac{\pi}{2}=0\) là 1 giá trị lượng giác quen thuộc mà bạn, thay trực tiếp vô thôi :D

NV
25 tháng 6 2020

\(cos\left(\frac{17\pi}{4}+x\right)cos\left(\frac{\pi}{4}-x\right)+sin^2x\)

\(=cos\left(4\pi+\frac{\pi}{4}+x\right)cos\left(\frac{\pi}{4}-x\right)+sin^2x\)

\(=cos\left(\frac{\pi}{4}+x\right)cos\left(\frac{\pi}{4}-x\right)+sin^2x\)

\(=\frac{1}{2}\left(cos\frac{\pi}{2}+cos2x\right)+sin^2x\)

\(=\frac{1}{2}cos2x+sin^2x=\frac{1}{2}\left(1-2sin^2x\right)+sin^2x\)

\(=\frac{1}{2}-sin^2x+sin^2x=\frac{1}{2}\)

NV
26 tháng 4 2019

Ta có \(cos^2\left(\frac{\pi}{4}-x\right)=sin^2\left(\frac{\pi}{2}-\left(\frac{\pi}{4}-x\right)\right)=sin^2\left(x+\frac{\pi}{4}\right)\)

\(\Rightarrow\frac{1-sin^2x}{2cot\left(\frac{\pi}{4}+x\right).cos^2\left(\frac{\pi}{4}-x\right)}=\frac{cos^2x}{2cot\left(\frac{\pi}{4}+x\right).sin^2\left(\frac{\pi}{4}+x\right)}=\frac{cos^2x}{2.cos\left(\frac{\pi}{4}+x\right).sin\left(\frac{\pi}{4}+x\right)}\)

\(=\frac{cos^2x}{sin\left(\frac{\pi}{2}+2x\right)}=\frac{cos^2x}{cos2x}\)???

Đến đây thì đoán là bạn ghi sai đề, tử số phải là \(cos^2x-sin^2x\) chứ ko phải \(1-sin^2x\)\(cos^2x-sin^2x=cos2x\) mới rút gọn hết với mẫu

NV
21 tháng 6 2020

\(A=-2cosx+2cosx+tan^2x-\frac{1}{cos^2x}\)

\(=tan^2x-\left(1+tan^2x\right)=-1\)

16 tháng 3 2021

2sin(π2+x)+sin(3π−x)+sin(3π2+x)+cos(π2+x)2sin(π2+x)+sin(3π−x)+sin(3π2+x)+cos(π2+x)

=2cosx+sinx−cosx−sinx=2cosx+sinx−cosx−sinx

=cosx