K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2016

9999932015= 9999934.503+3= 9999934.503.9999933= (.....1).(.....7) = (....7)

5555572013= 5555574.503.555557 = (.....1).(.....7) = (.....7)

Suy ra 9999932015- 5555572013= (....7) - (....7) = (....0) chia hết cho 5   

11 tháng 4 2016

Diện tích toàn phần của khối nhựa hình lập phương là:

10 x 10 x 6 = 600 (cm2)

Cạnh khối gỗ hình lập phương là:

10 : 2 = 5 (cm)

Diện tích toàn phần của khối gỗ hình lập phương là:

5 x 5 x 6 = 150 (cm2)

Diện tích toàn phần của khối nhựa gấp diện tích toàn phần của khối gấp số lần là:

600 : 150 = 4 (lần)

18 tháng 5 2017

Bài 3:

a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)

3A = \(1-\frac{1}{2^6}\)

=> 3A < 1 

=> A < \(\frac{1}{3}\)(đpcm)

b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)

4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)       (1)

Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)

4B = \(3-\frac{1}{3^{99}}\)

=> 4B < 3

=> B < \(\frac{3}{4}\)   (2)

Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)

18 tháng 5 2017

bài 1:

5n+7 chia hết cho 3n+2

=> [3(5n+7) - 5(3n + 2)] chia hết cho 3n+2

=> (15n + 21 - 15n - 10) chia hết cho 3n+2

=> 11 chia hết cho 3n + 2

=> 3n + 2 thuộc Ư(11) = {1;-1;11;-11}

Ta có bảng:

3n + 21-111-11
n-1/3 (loại)-1 (chọn)3 (chọn)-13/3 (loại)

Vậy n = {-1;3}

16 tháng 2 2020

\(999993^{1999}-555557^{1997}=\left(999993^4\right)^{499}.999993^3-\left(555557^4\right)^{499}.555557\)

\(=\left(....1\right)^{499}.999993-\left(.....1\right)^{499}.555557=\left(....3\right)-\left(.....7\right)=\left(.....6\right)\)

16 tháng 2 2020

\(\frac{1}{41}+\frac{1}{42}+....+\frac{1}{80}=\left(\frac{1}{41}+\frac{1}{42}+....+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+....+\frac{1}{80}\right)\)

\(< \left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\left(20\text{ số hạng}\right)\right)+\left(\frac{1}{60}+\frac{1}{60}+....+\frac{1}{60}\left(20\text{ số hạng}\right)\right)=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

3 tháng 6 2016

Bài 1:

a) 571999 = 571996 . 573 = 57499.4 . ( ....3) = (...1) . (....3) = (....3)

Vậy 571999 có chữ số tận cùng là 3

b) 931999 = 931996 . 933 = 93499.4 . (...7) = (....1) . (...7) = (...7)

Vậy 931999 có chữ số tận cùng là 7

Bài 2 

A = 9999931999 - 5555571997 chia hết cho 5

=> A = ( 9999931996 . 9999933 ) - ( 5555571996 . 555557 ) chia hết cho 5

=> A =  [ 999993499.4 . (....7) ] - [ 555557499.4 . (....7) chia hết cho 5

=>  A = [ (....1 ) .(...7) ] - [ (...1) . (...7) ] chia hết cho 5

=>  A  = (...7) - (...7) chia hết cho 5

=> A   =  (...0) chia hết cho 5 (đpcm)

Ai k mik mik k lại

7 tháng 4 2016

Có:\(\frac{1}{2}<\frac{2}{3}\)

\(\frac{3}{4}<\frac{4}{5}\)

\(\frac{5}{6}<\frac{6}{7}\)

..............

\(\frac{2011}{2012}<\frac{2012}{2013}\)=>A<\(\frac{2}{3}.\frac{4}{5}.....\frac{2012}{2013}\)

=> A2<\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.....\frac{2011}{2012}.\frac{2012}{2013}\)

=> A2<\(\frac{1.2.3.4.....2011.2012}{2.3.4.5.....2012.2013}\)

=>A2<\(\frac{1}{2013}\)=>DPCM

4 tháng 3 2018

Ta có : 

\(A=1+5+5^2+...+5^{32}\)

\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{30}+5^{31}+5^{32}\right)\)

\(A=31+5^3\left(1+5+5^2\right)+...+5^{30}\left(1+5+5^2\right)\)

\(A=31+31.5^3+...+31.5^{30}\)

\(A=31\left(1+5^3+...+5^{30}\right)\) chia hết cho 31 

Vậy \(A\) chia hết cho 31

4 tháng 3 2018

\(a)\) Ta có : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)

\(\Leftrightarrow\)\(a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow\)\(ab+ac< ab+bc\)

\(\Leftrightarrow\)\(ac< bc\)

\(\Leftrightarrow\)\(a< b\)

Mà \(a< b\) \(\Rightarrow\) \(\frac{a}{b}< 1\)

Vậy ...

19 tháng 4 2019

A = 1/2.3/4.....2015/2016

= 1.3.5.....2015/2.4.6......2016

= 1.3.5.....2015/(1.2).(2.2).....(2.1008)

= 1.3.5.....2015/2^1008 . 1.2....1008

                        GIÚP MÌNH VỚI !!!  AI GIÚP MÌNH ĐẦU TIÊN CẢ CHỖ NÀY MÌNH SẼ TICK KIỆT LIỆT CHO NGƯỜI ĐÓ NHABài 1: Chứng minh rằng:a)A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\)b) B=\(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}< 2\)c)C=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{3}{4}\)d) D=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\) Bài 2: cho biểu...
Đọc tiếp

                        GIÚP MÌNH VỚI !!!  AI GIÚP MÌNH ĐẦU TIÊN CẢ CHỖ NÀY MÌNH SẼ TICK KIỆT LIỆT CHO NGƯỜI ĐÓ NHA

Bài 1: Chứng minh rằng:

a)A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\)

b) B=\(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}< 2\)

c)C=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{3}{4}\)

d) D=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)

 

Bài 2: cho biểu thức: A=\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}\)

Chứng tỏ : \(\frac{1}{2}< A< 1\)

Bài 3: Tìm x biết:

a) \(\frac{1}{6}.x+\frac{1}{12}.x+\frac{1}{20}.x+...+\frac{1}{2450}.x=1\)

b)\(\left|2\frac{2}{9}-x\right|=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)

 

Bài 4: Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất:

a) A=\(\left(x-1^2\right)+2018\) 

b) B= |x+4| +1930

c)C=\(\frac{5}{x-2}\)

d)D=\(\frac{x+5}{x-4}\)

 

Bài 5 Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất:

a) P=2017-(x+1)2018

b) Q=1010-|3-x|

c) C=\(\frac{5}{\left(x-3\right)^2+1}\)

d)D=\(\frac{4}{\left|x-2\right|+2}\)

 

Bài 6: Cho biết 3a +2b chia hết cho 17 . Chứng minh rằng: 10a+b chia hết cho 17 (a,b\(\in\)\(ℤ\))

Bài 7: Chứng minh rằng 3x+5y\(⋮\)\(\Leftrightarrow\)x+4y\(⋮\)7 (x,y\(\in\)\(ℤ\))

GIÚP MÌNH NHA SAU ĐÓ AI GIÚP DC CHO MÌNH HẾT CHỖ NÀY SẼ CÓ THƯỞNG ĐÓ !!!!

 

 

 

0