Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề hơn nhé.
Trả lời:
\(A=\sqrt{3}-\frac{\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\)
\(A=\sqrt{3}+\frac{\sqrt{6}}{\sqrt{2}-1}-\frac{2\sqrt{2}+2}{\sqrt{2}+1}\)
\(A=\sqrt{3}+\frac{\sqrt{6}.\left(\sqrt{2}+1\right)}{2-1}-\frac{2.\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
\(A=\sqrt{3}+\sqrt{6}.\left(\sqrt{2}+1\right)-2\)
\(A=\sqrt{3}+\sqrt{12}+\sqrt{6}-2\)
\(A=\sqrt{3}+2\sqrt{3}+\sqrt{6}-2\)
\(A=3\sqrt{3}+\sqrt{6}-2\)
\(=4\sqrt{2}-9\sqrt{2}+14\sqrt{2}-20\sqrt{2}=-11\sqrt{2}\)
a/ \(\left(\sqrt{18}\right)^2-2\cdot\sqrt{18}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{18}-\sqrt{3}\right)^2\)
b/\(\left(\sqrt{54}\right)^2-2\cdot\sqrt{54}+1=\left(\sqrt{54}-1\right)^2\)
c/\(\left(\sqrt{9}\right)^2-2\cdot\sqrt{9}\cdot\sqrt{5}+\left(\sqrt{5}\right)^2=\left(\sqrt{9}-\sqrt{5}\right)^2\)
d/\(\left(\sqrt{8}\right)^2+2\cdot\sqrt{8}\cdot\sqrt{5}+\left(\sqrt{5}\right)^2=\left(\sqrt{8}+\sqrt{5}\right)^2\)
\(3-\sqrt{3}+\sqrt{6}=\left(\sqrt{3}\right)^2-\sqrt{3}+\sqrt{3}.\sqrt{2}\)
\(=\sqrt{3}.\left(\sqrt{3}-1+\sqrt{2}\right)\)