K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2018

Bài 2, \(\left(x-1\right)^3=27\)

\(\Leftrightarrow x-1=3\)

\(\Leftrightarrow x=4\)

Bài 3, \(-2,4-\frac{2}{3}< x\le\frac{5}{3}-1\frac{2}{5}\)

\(\Leftrightarrow-3,0\left(6\right)< x\le0,2\left(6\right)\)

Vì x nguyên  nên \(x\in\left\{-3;-2;-1;0\right\}\)

Bài 4, Từ \(2x=3y=4z\)

\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)(cùng chia cho 12)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{130}{13}=10\)

\(\Rightarrow\hept{\begin{cases}x=6.10=60\\y=4.10=40\\z=3.10=30\end{cases}}\)

8 tháng 8 2017

bn ơi,vì tất cả bài tập này khá nhiều và cx khá khó nên sẽ ko ai trả lời đâu,bn nên đăng từng bài một thôi nhé,nếu bn đăng như mk nói thì mà ko có ai trả lời thì hãy viết bài toán đó trên google để tra nhé,chúc bn làm bài tốt

8 tháng 8 2017

thank bn

30 tháng 9 2019

a)\(2x=3y,4y=5z\Leftrightarrow\frac{x}{3}=\frac{y}{2},\frac{y}{5}=\frac{z}{4}\Leftrightarrow\frac{x}{15}=\frac{y}{10},\frac{y}{10}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\Leftrightarrow\frac{2x}{30}=\frac{y}{10}=\frac{2z}{16}\)

ADTCDTS=NHAU TA CÓ

\(\frac{2x}{30}=\frac{y}{10}=\frac{2z}{16}=\frac{2x+y-2z}{30+10-16}=\frac{24}{24}=1\)

x=15

y=10

z=8

b) Ta có BCNN(2,3,4)=12

\(\Rightarrow\frac{2x}{12}=\frac{3x}{12}=\frac{4z}{12}\Leftrightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\Leftrightarrow\frac{x^2}{36}=\frac{y^2}{16}=\frac{z^2}{9}\)

ADTCDTS=NHAU TA CÓ

\(\frac{x^2}{36}=\frac{y^2}{16}=\frac{z^2}{9}=\frac{x^2+y^2+z^2}{36+16+9}=\frac{61}{61}=1\)

\(\frac{x^2}{36}=1\Rightarrow x^2=36\Rightarrow x=+_-6\)

\(\frac{y^2}{16}=1\Rightarrow x=+_-4\)

\(\frac{z^2}{9}=1\Rightarrow z=+_-3\)

TUỰ KẾT LUẬN NHA BẠN

C)\(\frac{x-6}{3}=\frac{y-8}{4}=\frac{z-10}{5}\Leftrightarrow\frac{x^2-36}{9}=\frac{y^2-64}{16}=\frac{z^2-100}{25}\)

ADTCDTS=NHAU TA CÓ

\(\frac{x^2-36}{9}=\frac{y^2-64}{16}=\frac{z^2-100}{25}=\frac{\left(x^2-36\right)+\left(y^2-64\right)+\left(z^2-100\right)}{9+16+25}\)

\(=\frac{x^2-36+y^2-64+z^2-100}{50}=\frac{\left(x^2+y^2+z^2\right)-\left(36-64-100\right)}{50}\)

\(=\frac{\left(x^2+y^2+z^2\right)-\left(36+64+100\right)}{50}=\frac{200-200}{50}=\frac{0}{50}=0\)

\(\Rightarrow\frac{x^2-36}{9}=0\Rightarrow x^2-36=0\Rightarrow x^2=36\Rightarrow x=+_-6\)

\(\frac{y^2-64}{16}=0\Rightarrow y^2-64=0\Rightarrow y^2=64\Rightarrow y==+_-8\)

\(\frac{z^2-100}{25}=0\Rightarrow z^2-100=0\Rightarrow z^2=100\Rightarrow z=+_-10\)

TỰ KẾT LUẠN NHA

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

27 tháng 10 2019

1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{12x-15y}{7}=\frac{20y-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)

 \(\Rightarrow\hept{\begin{cases}12x-15y=0\\15y-20z=0\end{cases}\Rightarrow}\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{12}\\\frac{y}{20}=\frac{z}{15}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{75}=\frac{y}{60}\\\frac{y}{60}=\frac{z}{45}\end{cases}\Rightarrow}\frac{x}{75}=\frac{y}{60}=\frac{z}{45}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)

=> x = 75.4 : 15 = 20 ;

     y = 60.4 : 15 = 16 ;

     z = 45.4 : 15 = 12

Vậy x = 20 ; y = 16 ; z = 12 

27 tháng 10 2019

2) Từ đẳng thức \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Rightarrow\frac{z}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)

Nếu x + y + z + t = 0

=> x + y = - (z + t)

=> y + z = - (t + x)

=> z + t = - (x + y)

=> t + x = - (z + y)

Khi đó : 

P =  \(\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(z+y\right)}{z+y}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

=> P = 4 

Nếu x + y + z + t khác 0 

=> \(\frac{1}{y+z+t}=\frac{1}{z+t+x}=\frac{1}{t+x+y}=\frac{1}{x+y+z}\)

=> y + z + t = z + t + x = t + x + y = x + y + z

=> x =y = z = t

Khi đó : P = 1 + 1 + 1 + 1 = 4

Vậy nếu x + y + z + t = 0 thì P = - 4

       nếu x + y + z + t khác 0 thì P = 4

10 tháng 9 2017

ngu như con lợn

11 tháng 9 2017

bạn nói mình ngu sao bạn ko giải đi

17 tháng 10 2018

a) Theo đề, ta có:

  \(\frac{x}{2}=\frac{y}{3}\) và\(\frac{y}{5}=\frac{z}{7}\) và x+y+z=98

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\) và x+y+z=98

Theo tính chất dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\) \(=\frac{x+y+z}{10+15+21}=\frac{98}{46}=\frac{49}{23}\)

       Suy ra:      \(x=\frac{490}{23};y=\frac{735}{23};z=\frac{1029}{23}\)

b) Theo đề, ta có:

     2x=3y=5z và x+y-z=95

=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) và x+y-z=95

     Theo tính chất dãy tỉ số bằng nhau, ta có:

         \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) \(=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)

         Suy ra:    x=20 ; y=50 ; z=30

c) Theo đề, ta có:

       \(\frac{x}{2}=\frac{y}{3}\) va xy=54

     Đặt \(\frac{x}{2}=\frac{y}{3}\)\(=t\) 

          nên x=2t

                 y=3t

Ta có:     x.y  =54

             2t .3t=54

                6t2=54

                  t2=9

             => t =+3

Suy ra:   x=6 hoặc x= -6

              y=9 hoặc y= -9

d) Theo đề, ta có:

       \(\frac{x}{5}=\frac{y}{3}\) và x2+y2=4

    Đặt  \(\frac{x}{5}=\frac{y}{3}=t\)

       nên x=5t

              y=3t

    Ta có:      x2+y2=4

                  (5t)2+(3t)2=4

                        8t2      =4

                          t2      =\(\frac{1}{2}\)

 Suy ra: VÔ LÝ

 hok tot nha!!!

9 tháng 8 2019

a) bài 1

để \(x\in Z\)thì \(3x-1⋮x-1\)

mà \(x-1⋮x-1\)

\(\Rightarrow3\left(x-1\right)⋮x-1\)

\(\Rightarrow\left(3x-1\right)-\left[3x-3\right]⋮x-1\)

\(\Rightarrow2⋮x-1\)

\(\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

ta có bảng

x-11-12-2
x203-1

vậy \(x\in\left\{2;0;3;-1\right\}\)

9 tháng 8 2019

còn nữa mà bạn

20 tháng 3 2018

a) Ta có: \(|\frac{1}{2}x-3y+1|\ge0\)    và   \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\)

=> \(|\frac{1}{2}x-3y+1|=-\left(x-1\right)^2=0\)

=> x-1=0

=> x=1

\(|\frac{1}{2}x-3y+1|=0\)

=> \(\frac{1}{2}.1-3y+1=0\)

=> \(\frac{1}{2}-3y=-1\)

=> \(3y=\frac{1}{2}-\left(-1\right)\)

=>\(3y=\frac{1}{2}+1=\frac{3}{2}\)

=> \(y=\frac{3}{2}:3=\frac{3}{2}.\frac{1}{3}=\frac{1}{2}\)

b) Có: \(x^2\le y;y^2\le z;z\le x\)

=> \(x^4\le y^2\) và \(y^2\le x\)

=> \(x^4\le x\)

=> \(x^4=x\)

=> \(x\in\left\{0;1\right\}\)

Có: \(x^4\le y^2\)\(y^2\le z\)và \(z\le x\)

=> \(x^4\le z\le x\)

Mà \(x^4=x\)

=> \(x^4=x=z\)

=> \(z\in\left\{0;1\right\}\)

Có: \(x^4\le y^2\)và \(y^2\le z\)

=> \(x^4\le y^2\le z\)

Mà \(x^4=x=z\)

=> \(x^4=y^2\)

=> \(y^2\in\left\{0;1\right\}\)

=> \(y\in\left\{0;1\right\}\)

c)=> \(z=\frac{8-x}{3}\)và \(y=\frac{9-2}{2}\)

=> \(x+y+z=x+\frac{9-x}{2}+\frac{8-x}{3}=\frac{6x}{6}+\frac{27-3x}{6}+\frac{16-2x}{6}=\frac{6x+27-3x+16-2x}{6}\)

\(=\frac{x+43}{6}\)

..........Chỗ này?! Có gì đó sai sai.........

Mình nghĩ là \(x;y;z\in N\)thì mới đúng, chứ không âm thì nó có thể làm số thập phân...........Bạn xem lại cái đề đi

d) => \(a^2bc=-4;ab^2c=2;abc^2=-2\)

=> \(ab^2c+abc^2=2+\left(-2\right)=0\)

=> \(abc\left(b+c\right)=0\)

Mà a;b;c là 3 số khác 0

=> \(abc\ne0\)

=> \(b+c=0\)

=> \(b=-c\)

\(a^2bc+ab^2c-abc^2=-4+2-\left(-2\right)=0\)

=> \(abc\left(a+b-c\right)=0\)

\(abc\ne0\)

=> \(a+b-c=0\)

\(a^2bc-abc^2=-4-\left(-2\right)=-2\)

=> \(abc\left(a-c\right)=-2\)

Mà \(abc\ne0\)

=>\(a-c=-2\)

Có \(a+b-c=0\)

=> \(\left(a-c\right)+b=0\)

=> \(-2+b=0\)

=> \(b=2\)

 \(b=-c=2\)=> \(c=-2\)

=> \(a-\left(-2\right)=-2\)

=> \(a+2=-2\)

=> \(a=-2-2=-4\).....................Mình cũng thấy cái này lạ lạ à nha....... Bạn mò thử đi, chắc ra  -__-

Mỏi tay quáááá

20 tháng 7 2019

Bài 2 

| x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= | ( -3,2) + \(\frac{2}{5}\)|

=> | x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= | -2,8|

=> | x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= -2,8

=> | x - \(\frac{1}{3}\)| = -2,8 - \(\frac{4}{5}\)

=> | x - \(\frac{1}{3}\)| = - 3,6

=> x - \(\frac{1}{3}\)= -3,6

=> x = -3,6 + \(\frac{1}{3}\)

=> x = \(\frac{-49}{15}\)

21 tháng 7 2019

Bài 3 :

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)

\(=\frac{\left[a_1+a_2+...+a_9\right]-\left[1+2+...+9\right]}{9+8+...+1}=\frac{90-45}{45}=1\)

Ta có : \(\frac{a_1-1}{9}=1\Rightarrow a_1=10\)

Tương tự : \(a_1=a_2=....=a_9=10\)