K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left|a^2-3a+1\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}a^2-3a+1=1\\a^2-3a+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\left(a-3\right)=0\\\left(a-2\right)\left(a-1\right)=0\end{matrix}\right.\Leftrightarrow a\in\left\{0;3;2;1\right\}\)

\(\dfrac{2a^3-12a^2+17a-a-2}{a-2}=\dfrac{2a^3-12a^2+16a-2}{a-2}\)

\(=\dfrac{2a^3-4a^2-8a^2+16a-2}{a-2}\)

\(=2a^2-8a-\dfrac{2}{a-2}\)

Khi a=2 thì A không có giá trị

Khi a=1 thì \(A=2-8-\dfrac{2}{1-2}=-6+2=-4\)

Khi a=0 thì \(A=0-0-\dfrac{2}{0-2}=-\dfrac{2}{-2}=1\)

Khi a=3 thì \(A=2\cdot9-8\cdot3-\dfrac{2}{3-2}=18-24-2=-8\)

22 tháng 5 2023

a) Khi $a=3$, ta có phương trình:
$$x-3x+3-x+3x-3+3^2+3^3-3^2=0$$
$$\Leftrightarrow 6x=51 \Leftrightarrow x=\frac{17}{2}$$
Vậy nghiệm của phương trình là $x=\frac{17}{2}$.

b) Khi $a=1$, ta có phương trình:
$$x-x+1-x+1x-1+3+1-1=0$$
$$\Leftrightarrow x=0$$
Vậy nghiệm của phương trình là $x=0$.

c) Để phương trình có nghiệm $x=0,5$, ta cần giải phương trình:
$$0,5-a(0,5)+a-0,5+a(0,5)-a+3a^2+a^3-a^2=0$$
$$\Leftrightarrow a^3+3a^2-2a=0$$
$$\Leftrightarrow a(a-1)(a+2)=0$$
Vậy các giá trị của $a$ để phương trình có nghiệm $x=0,5$ là $a=0,1$ hoặc $a=-2$.

22 tháng 5 2023

 bạn có thể giải rõ hơn đc ko ạ

27 tháng 1 2022

a2 là a^2 hay a.2?

27 tháng 1 2022

a^2

23 tháng 6 2018

b1           \(\frac{x+a}{x+1}+\frac{x-2}{x}=2\)

ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)

\(\Leftrightarrow x\left(x+a\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)

\(\Leftrightarrow x^2+ax+x^2-x-2=2x^2+2x\)

\(\Leftrightarrow ax-3x=2\)

\(\Leftrightarrow\left(a-3\right)x=2\)

để pt vô nghiệm  thì a-3=0 <=>a=3 thì pt vô nghiệm

2,\(4x-k+4=kx+k\)

\(\Leftrightarrow4x-kx=2k-4\)

\(\Leftrightarrow\left(4-k\right)x=2k-4\)

để pt có nghiệm duy nhất thì 4-k khác 0 <=> k khác 4 thì pt có nghiệm duy nhất là\(\frac{2k-4}{4-k}\)

pt vô nghiệm thì 4-k=0 <=.>k=4 

22 tháng 4 2017

1. Ta có:

\(a^2+5b^2-\left(3a+b\right)\ge3ab-5\)

\(\Leftrightarrow2a^2+10b^2-6a-2b-6ab+10\ge0\)

\(\Leftrightarrow a^2-6ab+9b^2+a^2-6a+9+b^2-2b+1\ge0\)

\(\Leftrightarrow\left(a-3b\right)^2+\left(a-3\right)^2+\left(b-1\right)^2\ge0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=3\\b=1\end{cases}}\)

2. Giải:

Ta có: \(2x^2+3y^2+4x=19\)

\(\Leftrightarrow2x^2+4x+2=21-3y^2\)

\(\Leftrightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\left(1\right)\)

Xét thấy \(VT⋮2\Leftrightarrow3\left(7-y^2\right)⋮2\Leftrightarrow y\) lẻ (2)

Mặt khác \(VT\ge0\Leftrightarrow3\left(7-y^2\right)\ge0\Leftrightarrow y^2\le7\) (3)

Kết hợp (2) và (3) suy ra:

\(y^2=1\) Thay vào \(\left(1\right)\) ta có:

\(2\left(x+1\right)^2=18\). Vậy ta tính được các nghiệm:

\(\left(x,y\right)=\left(2;1\right);\left(2;-1\right);\left(-4;-1\right);\left(-4;1\right)\)

1 tháng 12 2019

a) x 2   -   3 2 x + 9 16 .                       b) 9 t 2  + 6t + 1.

c) 1 9 − 9 a 2                                  d) a 4  – 4 a 2  + 4.

22 tháng 9 2017

\(=a^3+b^3+a^3-b^3\)

\(=2a^3\)

10 tháng 5 2020

thiếu cái j đó ở phần a

10 tháng 5 2020

=)