Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2zx+2yz\)
b: \(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy+2xz-2yz\)
c: \(\left(x-y-z\right)^2=x^2+y^2+z^2-2xy-2xz+2yz\)
a: \(=a^2-b^4\)
b: \(=\left(a^2+2a\right)^2-9\)
c: \(=a^2-\left(2a+3\right)^2\)
d: \(=a^4-\left(2a-3\right)^2\)
e: \(=\left(-a^2-2a+3\right)^2\)
g: \(=4a^2-a^4\)
a ) \(\left(2a+b\right)^2-\left(2a+b\right)\left(2a-b\right)-2a\left(b-a\right)\)
\(=4a^2+4ab+b^2-\left(4a^2-b^2\right)-2ab+2a^2\)
\(=4a^2+4ab+b^2-4a^2+b^2-2ab+2a^2\)
\(=2a^2+2ab+2b^2\)
\(=\left(a^2+2ab+b^2\right)+a^2+b^2\)
\(=\left(a+b\right)^2+a^2+b^2\)
b ) \(\left(a+b-c\right)^2-\left(a+b\right)^2+2c\left(a+b\right)\)
\(=\left(a+b\right)^2-2\left(a+b\right)c+c^2-\left(a+b\right)^2+2c\left(a+b\right)\)
\(=\left[\left(a+b\right)^2-\left(a+b\right)^2\right]+\left[2c\left(a+b\right)-2\left(a+b\right)c\right]+c^2\)
\(=c^2\)
@Khôi Bùi
\(\left(2a+b\right)^2-\left(2a+b\right)\left(2a-b\right)-2a\left(b-a\right)\)
\(=\left(2a+b\right)\left[\left(2a+b\right)-\left(2a-b\right)\right]-2a\left(b-a\right)\)
\(=2b\left(2a+b\right)-2a\left(b-a\right)\)
\(=4ab+2b^2-2ab+2a^2=2\left(a^2+ab+b^2\right)\)
\(\left(a+b-c\right)^2-\left(a+b\right)^2+2c\left(a+b\right)\)
\(=\left(a+b-c+a+b\right)\left(a+b-c-a-b\right)+2c\left(a+b\right)\)
\(=-c\left(2a+2b-c\right)+2c\left(a+b\right)=\)
\(-2c\left(a+b\right)+c^2+2c\left(a+b\right)=c^2\)
ĐKXĐ: \(a\ne\pm\frac{1}{2}\)
\(\left(\frac{2a-1}{2a+1}-\frac{2a-3}{2a-1}\right):\frac{2a-1}{2a+1}\)
\(=\left(\frac{\left(2a-1\right)^2}{\left(2a+1\right)\left(2a-1\right)}-\frac{\left(2a-3\right)\left(2a+1\right)}{\left(2a-1\right)\left(2a+1\right)}\right).\frac{2a+1}{2a-1}\)
\(=\left(\frac{4a^2-4a+1}{\left(2a+1\right)\left(2a-1\right)}-\frac{4a^2-4a+3}{\left(2a+1\right)\left(2a-1\right)}\right).\frac{2a+1}{2a-1}\)
\(=\frac{-2}{\left(2a+1\right)\left(2a-1\right)}.\frac{2a+1}{2a-1}=\frac{-2}{\left(2a-1\right)^2}\)
a: \(=\left(-a^2-2a+3\right)^2\)
b: \(=\left(a^2+3\right)^2-4a^2\)
c: \(=-\left(a^2-2a\right)\left(a^2+2a\right)=-\left(a^4-4a^2\right)\)
Đoạn đầu cái chỗ (a^2+2a+3).(...) là tách với cái kia chứ không phải 2 cái nhân với nhau đâu
a) Áp dụng hằng đẳng thức : \(a^2-b^2+\left(a-b\right)\left(a+b\right)\)
Ta có ; \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)
\(=\left[\left(a^2+2a\right)+3\right]\left[\left(a^2+2a\right)-3\right]\)
\(=\left(a^2+2a\right)^2-3^2\)
\(=\left(a^2+2a\right)^2-9\)
2a*(-a)=
=--2a^2