K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 12 2021

Lời giải:

Ta thấy:

$|2a-3b+99|^{2021}\geq 0$ với mọi $a,b$ theo tính chất trị tuyệt đối

$(5a-6b)^{2020}\geq 0$ với mọi $a,b$

Do đó để tổng của chúng bằng $0$ thì:

$|2a-3b+99|^{2021}=(5a-6b)^{2020}=0$

$\Leftrightarrow 2a-3b+99=5a-6b=0$

$\Rightarrow a=198; b=165$

31 tháng 12 2021

em cảm ơn cô ạ 

26 tháng 12 2020

Ta có \(\hept{\begin{cases}\left|2a-3b+500\right|^{2021}\ge0\forall a;b\\\left(5a-6b\right)^{2020}\ge0\forall a;b\end{cases}}\Rightarrow\left|2a-3b+500\right|^{2021}+\left(5a-6b\right)^{2020}\ge0\forall a;b\)

Dấu "=" xảy ra <=> 

\(\hept{\begin{cases}2a-3b=500\\5a-6b=0\end{cases}}\Rightarrow\hept{\begin{cases}4a-6b=1000\\5a-6b=0\end{cases}}\Rightarrow\hept{\begin{cases}a=-1000\\b=-\frac{2500}{3}\end{cases}}\)

Vậy a = -1000 ; b = -2500/3 là giá trị cần tìm

1 tháng 1 2022
Ko bít Tự làm
31 tháng 12 2021

Ta có {|2a−3b+500|2021≥0∀a;b(5a−6b)2020≥0∀a;b⇒|2a−3b+500|2021+(5a−6b)2020≥0∀a;b\hept{|2a−3b+500|2021≥0∀a;b(5a−6b)2020≥0∀a;b⇒|2a−3b+500|2021+(5a−6b)2020≥0∀a;b

Dấu "=" xảy ra <=> 

{2a−3b=5005a−6b=0⇒{4a−6b=10005a−6b=0⇒{a=−1000b=−25003{2a−3b=5005a−6b=0⇒{4a−6b=10005a−6b=0⇒\hept{a=−1000b=−25003

Vậy a = -1000 ; b = -2500/3 là giá trị cần tìm

31 tháng 12 2021

cảm ơn bạn

9 tháng 12 2016

=18

13 tháng 12 2016

\(\frac{13}{4}\)

3 tháng 1 2022

a. 8a-6a-7a = 2a - 7a = -5a

b.6b2-4b2+3b2 = 2b^2 + 3b^2 = 5b^2

3 tháng 1 2022

a) \(\text{8a - 6a - 7a = (8 - 6 - 7).a = -5a.}\)

b) \(6b^2-4b^2+3b^2=\left(6-4+3\right).b^2=5b^2.\)

20 tháng 10 2016

mấy bn giúp mik đi 

21 tháng 10 2016

\(\left(-2a^2b^3\right)^{10}+\left(3b^2.c^4\right)^{15}=0\)

=>\(\left(2a^2b^3\right)^{10}+\left(3b^2.c^4\right)^{15}=0\)

=>\(b^{30}.\left(2a^{20}+3c^{60}\right)=0\)

=> \(b^{30}=0\)hoặc \(2a^{20}+3c^{60}=0\)

=> \(b=0\)hoặc \(a^{20}=0\)hoặc \(c^{60}=0\)( vì \(a^{20}\ge0\)và \(c^{60}\ge0\))

=> b = 0 hoặc a =0 hoặc c = 0 

31 tháng 12 2016

Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)

\(\Rightarrow a=3k;b=4k;c=5k\)

Thay vào biểu thức có :

\(\Rightarrow \frac{5a^2 + 2b^2 -c^2}{2a^2+3b^2-2c^2}\)

\(=\frac{5.(3k)^2+2.(4k)^2-(5k)^2}{2.(3k)^2+3.(4k)^2-2.(5k)^2}\)

Chia cả tử cả mẫu cho \(k^2 \) có giá trị biểu thức là :

\(\frac{5.9+2.16-25}{2.9+3.16-2.25}\)

\(=\frac{52}{16}\)

28 tháng 2 2017

dung roi cam on nhe