\(3^x\)= \(3^6\)

Tính hộ Yuu nha, ai xong đầu tiên...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)

\(\Rightarrow\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x.\left(x+3\right)}=\frac{303}{1540}\)

\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{308}\)

\(\Rightarrow x+3=308\)

\(\Rightarrow x=308-3\)

\(x=305\)

Vậy \(x=305\)

Tham khảo nhé~

\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

<=>\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

<=> \(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

<=>\(\frac{1}{x+3}=\frac{1}{308}\)

<=> x+3=308

<=> x=305

23 tháng 6 2018

\(\frac{19}{2}x-5x+\frac{7}{4}\)

 \(\frac{9}{2}x=\frac{-7}{4}\)

\(x=\frac{-7}{18}\)

23 tháng 6 2018

Đề sai rồi 

10 tháng 12 2019

a) \(2^{x+2}-2^x=96\)\(\Leftrightarrow2^x.4-2^x=96\)

\(\Leftrightarrow2^x\left(4-1\right)=96\)\(\Leftrightarrow2^x.3=96\)\(\Leftrightarrow2^x=32=2^5\)

\(\Leftrightarrow x=5\)

Vậy \(x=5\)

b) \(10^6-5^7=\left(2.5\right)^6-5^{6+1}=2^6.5^6-5^6.5=5^6\left(2^6-5\right)=5^6\left(64-5\right)=5^6.59⋮59\)

c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}\)

\(=3^{24}\left(3^4-3^3-3^2\right)=3^{24}\left(81-27-9\right)=3^{24}.45⋮45\)

10 tháng 12 2019

1. Ta có: 2x + 2 - 2x = 96

=> 2x.4 - 2x = 96

=> 2x(4 - 1) = 96

=> 2x = 96 : 3

=> 2x = 32

=> 2 = 25

=> x = 5

2. Ta có: 106 - 57 = (2.5)6 - 57 = 26.56 - 56.5 = 56(64 - 5) = 56 . 59 \(⋮\)59

817 - 279 - 913  = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 324.(34 - 33 - 32) = 224. 45 \(⋮\)45

18 tháng 7 2019

a)

\(P=3+3^3+3^5+...+3^{1991}\)

\(P=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(P=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{1986}\left(3+3^3+3^5\right)\)

\(P=273+3^6\cdot273+...+3^{1986}\cdot273\)

\(P=13\cdot21+3^6\cdot13\cdot21+...+2^{1986}\cdot13\cdot21\)

\(P=13\left(21+3^6\cdot21+...+3^{1986}\cdot21\right)⋮13\) (đpcm)

b)

\(P=3+3^3+3^5+...+3^{1991}\)

\(P=\left(3+3^5\right)+\left(3^3+3^7\right)+...+\left(3^{1987}\cdot3^{1991}\right)\)

\(P=\left(3+3^5\right)+3^2\left(3+3^5\right)+...+3^{1986}\left(3+3^5\right)\)

\(P=246+3^2\cdot246+...+3^{1986}\cdot246\)

\(P=41\cdot6+3^2\cdot41\cdot6+...+3^{1986}\cdot41\cdot6\)

\(P=41\left(6+3^2\cdot6+...+3^{1986}\cdot6\right)⋮41\) (đpcm)

Vậy ...

=))

17 tháng 8 2018

\(A=\frac{1}{1\cdot6}+\frac{1}{6\cdot11}+...+\frac{1}{496\cdot501}\)

\(5A=\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{496\cdot501}\)

\(5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{496}-\frac{1}{501}\)

\(5A=1-\frac{1}{501}\)

\(5A=\frac{500}{501}\)

\(A=\frac{100}{501}\)

Bài này bằng 100/501 đấy các bạn ơi.Mình cảm ơn các bạn nhiều nha.Chúc các bạn thành công trong sự nghiệp học tập , vươn xa đến cái đích nha, xin chào và hẹn gặp lại các bạn trong câu hỏi sắp tới nha.

1/a) 12 - x= 1-(-5)

      12 - x = 6

             x= 12-6

             x=6

 b)| x+4|= 12

x+4 = \(\pm\)12

*x+4=12

     x=8

*x+4= -12

    x=-16

2/Tìm n

\(n-5⋮n+2\)

=> \(n+2-7⋮n+2\)

mà \(n+2⋮n+2\)

=> 7\(⋮\)n+2

=> n+2 \(\varepsilon\)Ư(7)= {1;-1;7;-7}

n+21-17-7
n-1-35-9

3/a)4.(-5)2 + 2.(-12)

= 2.2.(-5)2 + 2.(-12)

=2[2.25.(-12)]

=2.(-600)

=-1200