Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có:
\(\frac{-1}{3}< 0\)
\(\frac{1}{100}>0\)
\(\Rightarrow\frac{-1}{3}< \frac{1}{100}\)
b)Ta có;
\(\frac{-231}{232}>-1\)
\(\frac{-1321}{1320}< -1\)
\(\Rightarrow\frac{-231}{232}>\frac{-1321}{1320}\)
c) Ta có:
\(\frac{-27}{29}< 0\)
\(\frac{272727}{292929}>0\)
\(\Rightarrow\frac{-27}{29}< \frac{272727}{292929}\)
Bài 2:
\(a\left(b+1\right)=ab+a\)
\(b\left(a+1\right)=ab+b\)
Mà \(a< b\)
\(\Rightarrow a\left(b+1\right)< b\left(a+1\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
\(7+\dfrac{7}{12}-\dfrac{1}{2}+3-\dfrac{1}{12}+5\)
\(=15+\dfrac{6}{12}-\dfrac{1}{2}=15+\dfrac{1}{2}-\dfrac{1}{2}=15\)
Áp dụng tc dtsbn:
\(2x=3y=4z\Rightarrow\dfrac{2x}{12}=\dfrac{3y}{12}=\dfrac{4z}{12}\\ \Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+z}{6+4+3}=\dfrac{520}{13}=40\\ \Rightarrow\left\{{}\begin{matrix}x=240\\y=160\\z=120\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+y+z}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}}=\dfrac{520}{\dfrac{13}{12}}=480\)
Do đó: x=240; y=160; z=120
\(\dfrac{\dfrac{7}{13}+\dfrac{7}{14}-\dfrac{7}{15}}{\dfrac{8}{13}+\dfrac{8}{14}-\dfrac{8}{15}}-\dfrac{\dfrac{5}{11}-\dfrac{5}{13}+\dfrac{5}{15}}{\dfrac{8}{11}-\dfrac{8}{13}+\dfrac{8}{15}}\)
\(=\dfrac{7\left(\dfrac{1}{13}+\dfrac{1}{14}-\dfrac{1}{15}\right)}{8\left(\dfrac{1}{13}+\dfrac{1}{14}-\dfrac{1}{15}\right)}-\dfrac{5\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{15}\right)}{8\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{15}\right)}\)
\(=\dfrac{7}{8}-\dfrac{5}{8}\)
\(=\dfrac{2}{8}=\dfrac{1}{4}\)
\(-\dfrac{27}{8}:x=\left(\dfrac{3}{2}\right)^3\)
=>\(-\dfrac{27}{8}:x=\dfrac{27}{8}\)
=>\(x=-\dfrac{27}{8}:\dfrac{27}{8}=-1\)