\(x\in R\) : x +2 \(\ge\) 0 / . B= / x
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3: 

a: \(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)

b: \(\left(-\dfrac{11}{2};7\right)\cup\left(-2;\dfrac{27}{2}\right)=\left(-\dfrac{11}{2};\dfrac{27}{2}\right)\)

c: \(\left(0;12\right)\text{\[}5;+\infty)=\left(0;5\right)\)

d: \(R\[ -1;1)=\left(-\infty;-1\right)\cup[1;+\infty)\)

AH
Akai Haruma
Giáo viên
1 tháng 9 2017

Lời giải:

Ta viết lại tập hợp A,B:

\(A=\left \{ x\in\mathbb{R}|x\leq 3\text{hoặc}x>6 \right \}\)

\(B=\left \{ x\in\mathbb{R}|-5\leq x\leq 5\right \}\)

a)

\(\bullet A\setminus B=\left \{ x\in\mathbb{R}|x<-5 \text{hoặc} x>6\right \}\)

Khoảng \((-\infty;-5)\)\((6;+\infty)\)

\(\bullet B\setminus A=\left\{x\in\mathbb{R}|3< x\leq 5\right\}\)

Nửa khoảng \((3;-5]\)

\(\bullet A\cup B=\left \{ x\in\mathbb{R}|x\leq 3, x>6 \text{hoặc}5\geq x>3 \right \}\)

\(\Rightarrow R\setminus (A\cup B)=\left \{ x\in\mathbb{R}|5< x < 6 \right \}\)

Khoảng \((5;6)\)

\(\bullet A\cap B=\left \{ x\in\mathbb{R}|-5\leq x\leq 3 \right \}\)

\(\Rightarrow R\setminus(A\cap B)=\left \{ x\in\mathbb{R}|x>3 \text{hoặc}x<-5 \right \}\)

Khoảng: \((3,+\infty); (-\infty;-5)\)

\(\bullet A\setminus B =\left \{ x\in\mathbb{R}|x> 6\text{hoặc}x< -5\right \}\)

\(\Rightarrow R\setminus( A\setminus B)=\left\{x\in\mathbb{R}| -5\leq x\leq 6\right\}\)

Đoạn \([-5;6]\)

b)

Vẽ trục số biểu diễn các tập hợp ra.

Khi đó:

Độ dài \(C\cap B\)\(a-(-5)=7\Rightarrow a=2\)

Độ dài \(D\cap B\) là: \(5-b=9\Rightarrow b=-4\)

\(\Rightarrow C\cap D=\left\{x\in\mathbb{R}| -4\leq x\leq 2\right\}\)

Nửa khoảng: \((-\infty,3];(6;+\infty)\)

1 tháng 9 2017

\(A\)

NV
15 tháng 5 2020

\(\left(m+1\right)x\ge m-2\)

Để BPT vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m+1=0\\m-2>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-1\\m>2\end{matrix}\right.\)

\(\Rightarrow\) Ko tồn tại m thỏa mãn

Đáp án B đúng

Câu 3: 

a: Vì \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

nên P(x) luôn là mệnh đề đúng

b: \(\Leftrightarrow x< =\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)< =0\)

\(\Leftrightarrow\sqrt{x}-1< =0\)

=>0<=x<=1

NV
29 tháng 4 2020

ĐKXĐ: \(x\ge\frac{2}{3}\)

\(\Leftrightarrow x^3-1+2x-1-\sqrt{3x-2}+x+1-\sqrt{x+3}\le0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)+\frac{4x^2-7x+3}{2x-1+\sqrt{3x-2}}+\frac{x^2+x-2}{x+1+\sqrt{x+3}}\le0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)+\frac{\left(x-1\right)\left(4x-3\right)}{2x-1+\sqrt{3x-2}}+\frac{\left(x-1\right)\left(x+2\right)}{x+1+\sqrt{x+3}}\le0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1+\frac{4x-3}{2x-1+\sqrt{3x-2}}+\frac{x+2}{x+1+\sqrt{x+3}}\right)\le0\)

\(\Leftrightarrow x-1\le0\) (ngoặc đằng sau luôn dương)

\(\Rightarrow x\le1\Rightarrow\frac{2}{3}\le x\le1\Rightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=1\end{matrix}\right.\) \(\Rightarrow a+b=5\)