Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(25-y^2=8\left(x-2009\right)^2\)
Ta có: \(25-y^2\le25\)
\(\Rightarrow8\left(x-2009\right)^2\le25\)
\(\Rightarrow\left(x-2009\right)^2< 4\)
Do \(x\in N\Rightarrow\left[{}\begin{matrix}\left(x-2009\right)^2=1\\\left(x-2009\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2010\\x=2009\end{matrix}\right.\left(x\in N\right)\)
+) Xét x = 2010
\(\Rightarrow25-y^2=8\Rightarrow y^2=17\) ( loại )
+) Xét x = 2009
\(\Rightarrow25-y^2=0\Rightarrow y=5\left(y\in N\right)\)
Vậy x = 2009, y = 5
Có: \(25-y^2\le25\)
\(\Rightarrow8\left|x-2009\right|\le25\)
\(\Rightarrow\left|x-2009\right|\le3\)
\(\Rightarrow\left[{}\begin{matrix}\left|x-2009\right|=3\\\left|x-2009\right|=2\\\left|x-2009\right|=1\\\left|x-2009\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-2009=3\\x-2009=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2012\\x=2006\end{matrix}\right.\\\left[{}\begin{matrix}x-2009=2\\x-2009=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2011\\x=2007\end{matrix}\right.\\\left[{}\begin{matrix}x-2009=1\\x-2009=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2010\\x=2008\end{matrix}\right.\\x-2009=0\Rightarrow x=2009\end{matrix}\right.\)
=> Ta có các TH sau:
\(\left[{}\begin{matrix}25-y^2=8\cdot3=24\\25-y^2=8\cdot2=16\\25-y^2=8\cdot1=8\\25-y^2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y^2=1\\y^2=9\\y^2=17\\y^2=25\end{matrix}\right.\)
Vì y thuộc N nên: \(\left[{}\begin{matrix}y=1\\y=3\\y=\sqrt{17}\left(loai\right)\\y=5\end{matrix}\right.\)
=> các gt x;y thỏa mãn đề là:
\(\left[{}\begin{matrix}y=1\\y=3\\y=5\end{matrix}\right.\) lần lượt các gt x tương đương là\(\left[{}\begin{matrix}\left[{}\begin{matrix}x=2012\\x=2006\end{matrix}\right.\\\left[{}\begin{matrix}x=2011\\x=2007\end{matrix}\right.\\x=2009\end{matrix}\right.\)
Mk ko hiểu cách của bạn lắm :)
Theo đề bài: \(25-y^2=8\left|x-2009\right|\)
\(\left\{{}\begin{matrix}8\left|x-2009\right|\ge0\\8\left|x-2009\right|⋮8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}25-y^2\ge0\\25-y^2⋮8\end{matrix}\right.\)
Suy ra:\(y^2\le25\)
Vì \(y\in N\) nên \(y\) có thể là: \(\left\{0;1;2;3;4;5\right\}\)
Xét từng trường hợp ta có:
\(25-0^2=25⋮̸8\)
\(25-1^2=24⋮8\)
\(25-2^2=21⋮̸8\)
\(25-3^2=16⋮8\)
\(25-4^2=9⋮̸8\)
\(25-5^2=0⋮8\)
Vậy ta sẽ xét:
\(y=\left\{1;3;5\right\}\)
Xét lần lượt ta có:
\(\left[{}\begin{matrix}y=1\Rightarrow8\left|x-2009\right|=24\Rightarrow\left|x-2009\right|=3\Rightarrow\left[{}\begin{matrix}x=2012\\x=2006\end{matrix}\right.\\y=3\Rightarrow8\left|x-2009\right|=16\Rightarrow\left|x-2009\right|=2\Rightarrow\left[{}\begin{matrix}x=2011\\x=2007\end{matrix}\right.\\y=5\Rightarrow8\left|x-2009\right|=0\Rightarrow x=2009\end{matrix}\right.\)
\(\Leftrightarrow8\left(x-2009\right)^2⋮8;8\left(x-2009\right)^2\le25;x\in N\)
Tự giải tiếp nhé
Ta có
\(\left(x-2019\right)^2\ge0\)
\(\Rightarrow8\left(x-2019\right)^2\ge0\)
Vế phải luôn lớn hơn hoặc bằng 0
\(\Rightarrow25-y^2\ge0\Rightarrow y^2\le25\Rightarrow y^2\in\left\{1;4;9;16;25\right\}\)
\(\Rightarrow y\in\left\{0;1;2;3;4;5\right\}\) '
\(25-y^2\in\left\{0;9;16;21;24\right\}\)
Ta có
\(25-y^2=8\left(x-2009\right)^2\Rightarrow\left(x-2009\right)^2=\frac{25-y^2}{8}\)
Vì x \(\in N\Rightarrow\left(x-2019\right)^2\in N\)
\(\Rightarrow\frac{25-y^2}{8}\in N\) hay \(25-y^2⋮8\)
\(\Rightarrow25-y^2\in\left\{16;24\right\}\)
\(\Rightarrow y\in\left\{1;3\right\}\)
Với y = 1 , có
\(\left(x-2009\right)^2=3\Rightarrow x\notin N\) , không thỏa mãn
Với y = 3 , ta có
\(\left(x-2009\right)^2=2\Rightarrow x\notin N\)
Vậy không có cặp số nào thỏa mãn đề bài
Do \(8\left(x-2009\right)^2\ge0\Rightarrow25-y^2\ge0\)
\(\Leftrightarrow y^2\le25\).Mà \(y\inℕ\) nên \(0\le y^2\le25\Leftrightarrow0\le y\le5\)
Mà \(8\left(x-2009\right)^2⋮8\Rightarrow25-y^2⋮8\)
\(\Rightarrow y\in\left\{1;3;5\right\}\)
Thay vào tìm x. :) Nhớ đk: \(x,y\inℕ\)
Ta có: \(25-y^2=8.\left(x-2009\right)^2\)
\(\Rightarrow8.\left(x-2009\right)^2+y^2=25\left(1\right)\)
Vì \(y^2\ge0\)nên \(\left(x-2009\right)^2\le\frac{25}{8}\)
\(\Rightarrow\left(x-2009\right)^2=0\)hoặc \(\left(x-2009\right)^2=1\)
Với \(\left(x-2009\right)^2=1\)thay vào \(\left(1\right)\), ta có:
\(8.1+y^2=25\)
\(\Rightarrow8+y^2=25\)
\(\Rightarrow y^2=17\)( loại )
Với \(\left(x-2009\right)^2=0\)thay vào \(\left(1\right)\), ta có:
\(8.0+y^2=25\)
\(\Rightarrow0+y^2=25\)
\(\Rightarrow y^2=25\)
\(\Rightarrow\orbr{\begin{cases}y=5\\y=-5\end{cases}}\)
Mà \(y\in N\)
\(\Rightarrow y=5,x=2009\)
Vậy \(x=2009,y=5\)
Ta có: \(\left(x-2009\right)^2\ge0\)nên \(8\left(x-2009\right)^2\ge0\)
VP \(\ge0\)nên \(25-y^2\ge0\Leftrightarrow y^2\le25\)(1)
Mặt khác, do \(\left[8\left(x-2009\right)^2\right]⋮2\)nên \(\left(25-y^2\right)⋮2\)
\(\Leftrightarrow y^2\)lẻ \(\Leftrightarrow y\)lẻ (2)
Kết hợp (1), (2) và \(y\inℕ\),ta được: \(y\in\left\{1;3;5\right\}\)(suy ra từ \(y^2\in\left\{1;9;25\right\}\))
*Với y = 1 thì \(25-1^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=24\Leftrightarrow\left(x-2009\right)^2=3\)(loại)
*Với y = 3 thì \(25-3^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=16\Leftrightarrow\left(x-2009\right)^2=2\)(loại)
*Với y = 5 thì \(25-5^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=0\Leftrightarrow\left(x-2009\right)^2=0\)\(\Leftrightarrow x=2009\)
Vậy x = 5 và y = 2009.
Chúc bạn học tốt!
x, y thuộc N nên (x;y)=(2009;5) thôi