Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=-2x^2+2x-2\)
\(=-2x\left(x^2-x+1\right)\)
Ta thấy \(x^2-x+1>0\)
\(\Rightarrow C< 0\)
C=-2x^2+2x-2= -(2x^2-2x+2)= -(x-1)2 =>C luôn âm
A= -x2 +24x-4= -(x2 -4x+4)= -(x-1)2 =>ko có gía trị x nào để biểu thức nhận giá trị dương
Chắc vậy :((
Mk nghĩ cái này giống 7 hàng đẳng thức nhưng mk ms học lp 7 nên ko bít làm có đúng ko nữa,nếu sai cho mk xl bn nha :)
bn nên vt thành phân thức thì mọi người sẽ dễ nhìn và sẽ giải giúp bn!!!
17) \(\left(x^2-11x+30\right)\left(x^2-13x+30\right)=24x^2\)
\(\left(x-11+\frac{30}{x}\right)\left(x-13+\frac{30}{x}\right)=24\)
\(t\left(t-2\right)=24\)
\(\left(t-1\right)^2=25\)
t =6 hoặc t =-4
+\(\left(x-11+\frac{30}{x}\right)=6\Leftrightarrow x^2-11x+30=6x\Leftrightarrow x^2-17x+30=0\)
+\(\left(x-11+\frac{30}{x}\right)=-4\)
\(1.\)
\(x^3z+x^2yz-x^2z^2-xyz^2\)
\(=x^3z-x^2z^2+x^2yz-xyz^2\)
\(=x^2z\left(x-z\right)-xyz\left(x-z\right)\)
\(=\left(x^2z-xyz\right)\left(x-z\right)\)
\(=xz\left(x-y\right)\left(x-z\right)\)
\(2.\)
\(x^2-\left(a+b\right)xy+aby^2\)
\(=x^2-axy-bxy+aby^2\)
\(=x^2-bxy-axy+aby^2\)
\(=x\left(x-by\right)-ay\left(x-by\right)\)
\(=\left(x-ay\right)\left(x-by\right)\)
\(3.\)
\(ab\left(x^2+y^2\right)+xy\left(x^2+y^2\right)\)
\(=abx^2+aby^2+a^2xy+b^2xy\)
\(=abx^2+b^2xy+a^2xy+aby^2\)
\(=bx\left(ax+by\right)+ay\left(ax+by\right)\)
\(=\left(ax+by\right)\left(bx+ay\right)\)
\(4.\)
\(\left(xy+ab\right)^2+\left(ay-bx\right)^2\)
\(=x^2y^2+2abxy+a^2b^2+a^2y^2-2aybx+b^2x^2\)
\(=x^2y^2+a^2b^2+a^2y^2+b^2x^2\)
\(=x^2y^2+b^2x^2+a^2b^2+a^2y^2\)
\(=x^2\left(b^2+y^2\right)+a^2\left(b^2+y^2\right)\)
\(=\left(a^2+x^2\right)\left(b^2+y^2\right)\)
\(5.\)
\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2b-a^2c+b^2c-ab^2+ac^2-bc^2\)
\(=a^2b-ab^2-a^2c-b^2c+ac^2-bc^2\)
\(=ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)\)
\(=ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(ab-ac-bc+c^2\right)\)
\(=\left(a-b\right)\left(ab-bc-ac+c^2\right)\)
\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)
\(=\left(a-c\right)\left(b-c\right)\left(a-c\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
\(6.\)
\(16x^2-40xy+2y^2\)
\(=\left(4x\right)^2-2\cdot4\cdot5xy+\left(5y\right)^2\)
\(=\left(4x-5y\right)^2\)
\(7.\)
\(25x^4-10x^2y+y^2\)
\(=\left(5x^2\right)^2-2\cdot5x^2y+y^2\)
\(=\left(5x^2+y\right)^2\)
\(8.\)
\(-16x^4y^6-24x^5y^5-9x^6y^4\)
\(=-\left(4^2x^4y^6+2\cdot4\cdot3x^5y^5+3^2x^6y^4\right)\)
\(=-\left[\left(4x^2y^3\right)^2+2\left(4x^2y^3\right)\left(3x^3y^2\right)+\left(3x^3y^2\right)^2\right]\)
\(=\left(4x^2y^3+3x^3y^2\right)^2\)
\(9.\)
\(16x^2-4y^2-8x+1\)
\(=\left(4x\right)^2-\left(2y\right)^2-8x+1\)
\(=\left(4x\right)^2-8x+1-\left(2y\right)^2\)
\(=\left(4x+1\right)^2-\left(2y\right)^2\)
\(=\left(4x-2y+1\right)\left(4x+2y+1\right)\)
\(10.\)
\(49x^2-25+42xy+9y^2\)
\(=\left(7x\right)^2-5^2+2\cdot7\cdot3xy+\left(3y\right)^2\)
\(=\left(7x\right)^2+2\cdot7\cdot3xy+\left(3y\right)^2-5^2\)
\(=\left(7x+3y\right)^2-5^2\)
\(=\left(7x+5y+5\right)\left(7x+3y-5\right)\)
a, \(\Leftrightarrow\left(x+1+x-2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-2\right)+\left(x-2\right)^2\right]-\left(2x-1\right)^3=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+2x+1-x^2+x+2+x^2-4x+4\right)-\left(2x-1\right)^3=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-x+7-\left(2x-1\right)^2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-x+7-4x^2+4x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(-3x^2+3x+6\right)=0\)
\(\Leftrightarrow-3\left(2x-1\right)\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+1\right)\left(x-2\right)=0\)
=>x=1/2 hoặc x=-1 hoặc x=2
Vậy pt có tập nghiệm là S={1/2;-1;2}
b, \(x^4=24x+32\Leftrightarrow x^4-24x-32=0\)
\(\Leftrightarrow x^4-2x^3-4x^2+2x^3-4x^2-8x+8x^2-16x-32=0\)
\(\Leftrightarrow x^2\left(x^2-2x-4\right)+2x\left(x^2-2x-4\right)+8\left(x^2-2x-4\right)=0\)
\(\Leftrightarrow\left(x^2-2x-4\right)\left(x^2+2x+8\right)=0\)
\(\Leftrightarrow x^2-2x-4=0\) (vì x^2+2x+8 > 0)
\(\Leftrightarrow\left(x-1\right)^2-5=0\Leftrightarrow\left(x-1\right)^2=5\Leftrightarrow x-1=\pm\sqrt{5}\Leftrightarrow x=1\pm\sqrt{5}\)
Vậy...
c, \(\left(x-6\right)^4+\left(x-8\right)^4=16\)
Đặt x-6=t => x-8=t-2
Ta có: \(t^4+\left(t-2\right)^4=16\Leftrightarrow t^4+t^4-8t^3+24t^2-32t+16=16\)
\(\Leftrightarrow2t^4-8t^3+24t^2-32t=0\Leftrightarrow t^4-4t^3+12t^2-16t=0\)
\(\Leftrightarrow t^4-2t^3-2t^3+4t^2+8t^2-16t=0\)
\(\Leftrightarrow t^3\left(t-2\right)-2t^2\left(t-2\right)+8t\left(t-2\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t^3-2t^2+8t\right)=0\Leftrightarrow\left(t-2\right)t\left(t^2-2t+8\right)=0\)
Mà t^2-2t+8=(t-1)^2+7 > 0
\(\Rightarrow\orbr{\begin{cases}t-2=0\\t=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-6-2=0\\x-6=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=8\\x=6\end{cases}}}\)
Vậy...
15x( x- y) - 25x + 25y
= 15x(x-y) - 25 ( x - y)
= (15x - 25) ( x-y)
= 5 (3x - 5)(x-y)
a; x^8 + x^4 + 1
= x^8 + 2x^4 + 1 - x^4
= (x^4 + 1) - ( x^2)^2
= (x^4 - x^2 + 1)( x^4 + x^2 + 1)
= ( x^4 - x^2 + 1)(x^4 +2x^2 + 1 - x^2)
= ( x^4 - x^2 + 1)[(x^2 + 1)^2 - (x)^2 ]
= ( x^4 - x^2 + 1)( x^2 -x + 1)( x^2 +x + 1)
4y/x^2
\(=\dfrac{24x^6}{25y^3}.\dfrac{50y^4}{x^8}\)
\(=\dfrac{24.25y}{x^2}\)
\(=\dfrac{600y}{x^2}\)