Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu này xài cách đặt ẩn giống câu trên luôn
b) Đặt n = x2-3x+3 ta được
n(n+x)=2x2
n2 +nx-2x2=0
n^2-1nx+2nx-2x^2=0
n(n-x)+2x(n-x)=0
(n+2x)(n-x)=0
(x^2-3x+3+2x)(x^2-3x+3-x)=0
(x^2-x+3)(x^2-4x+3)=0
mà x^2-x+3 =0
x^2-1/2.2x+1/4-1/4+3=0
(x+1/2)^2+11/4 >0( loại)
Vậy ta còn
x^2-4x+3=0
x^2-1x-3x+3=0
(x-1)(x-3)=0
<=> x-1=0 hay x-3=0
x=1 hay x=3
Vậy S= (1;3)
a) (x -1)(x-6)(x-5)(x-2)=252
<=>( x^2-7x+6)(x^2-7x+10)=252
Đặt n=x^2-7x+6 ta được :
n(n+4)=252
n^2+4n-252=0
n^2-14n+18n-252=0
n(n-14)+18(n-14)=0
(n+18)(n-14)=0
r tới đây bạn tự giải tiếp nha, mình đánh máy ko quen nên hơi lâu, với bạn tự thêm dấu tương đương nữa, chờ mình câu2
x=(căn bậc hai(127)+5^(3/2))^(1/3)/(4^(1/3)*căn bậc hai(5))-4^(1/3)/(2*căn bậc hai(5)*(căn bậc hai(127)+5^(3/2))^(1/3))
; x = -((căn bậc hai(127)+5^(3/2))^(2/3)*(căn bậc hai(3)*i+1)+2^(1/3)*căn bậc hai(3)*i-2^(1/3))/(2^(5/3)*căn bậc hai(5)*(căn bậc hai(127)+5^(3/2))^(1/3))
;x = ((căn bậc hai(127)+5^(3/2))^(2/3)*(căn bậc hai(3)*i-1)+2^(1/3)*căn bậc hai(3)*i+2^(1/3))/(2^(5/3)*căn bậc hai(5)*(căn bậc hai(127)+5^(3/2))^(1/3));
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
a, x3-3x2+3x-1=0 b, (2x-5)2-(x+2)2=0 c, x2-x=3x-3
<=>x3-x2-2x2+2x+x-1=0 <=>(2x-5-x-2)(2x-5+x+2)=0 <=>x2-x-3x+3=0
<=>(x3-x2)-(2x2-2x)+(x-1)=0 <=>(x-7)(3x-3)=0 <=>x2-4x+3=0
<=>x2(x-1)-2x(x-1)+(x-1)=0 <=>x-7=0 hoặc 3x-3=0 <=>x2-x-3x+3=0
<=>(x-1)(x2-2x+1)=0 1, x-7=0 2, 3x-3=0 <=>(x2-x)-(3x-3)=0
<=>(x-1)(x-1)2=0 <=>x=7 <=>x=1 <=>x(x-1)-3(x-1)=0
<=>x-1=0 Vậy TN của PT là S={7;1} <=>(x-1)(x-3)=0
<=>x=1 <=>x-1=0 hoặc x-3=0
Vậy tập nghiệm của phương trình là S={1} 1, x-1=0 2, x-3=0
<=>x=1 <=>x=3
Vậy TN của PT là S={1;3}
C1 : Cardano (mk chưa học )
C2 : Mode set up -> 5 -> ax^3 + bx^2 + cx + d = 0
PT <=> \(x_1=-1,209...;x_2=2,104....\)
=> 24x3 - 4x2 - 4x - 6x2 + x + 1 = 0
=> 4x.(6x2 - x - 1) - (6x2 - x - 1) = 0
=> (6x2 - x - 1)(4x - 1) = 0
=> (6x2 - 3x + 2x - 1) (4x - 1) = 0
=> [ 3x.(2x - 1) + (2x - 1) ] . (4x - 1) = 0
=> (2x - 1)(3x + 1).(4x - 1) = 0
=> 2x - 1 = 0 => x = 1/2
hoặc 3x + 1 = 0 => x = -1/3
hoặc 4x - 1 = 0 => x = 1/4
Vậy x = 1/2 , x = -1/3 , x = 1/4