K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2018

Đề bài:

247 + 256 = ??

Kết Quả:

247 + 256 = 503

Đáp số:

503

Chúc bạn học tốt

29 tháng 5 2018

247 + 256 = 503

~ Ai k mình mình k lại ~

Ai tick cho mình mình tick lại cho

27 tháng 1 2016

rùi đó bạn tik lại mk nha!

11 tháng 9 2018

A = 1/100.99 - 1/99.98 - 1/98.97 - ... - 1/1.2

A = - (1/99.100 + 1/98.99 + 1/97.98 +... + 1/1.2)

A = - ( 1/99 - 1/100 + 1/98 - 1/99 + 1/97 - 1/98 +... + 1 - 1/2)

A = -(1 - 1/100)

A = -99/100

13 tháng 7 2018

ick mình

13 tháng 7 2018

Phải làm đúng mới k

7 tháng 3 2020

Bạn tham khảo link này:

https://olm.vn/hoi-dap/detail/245471181528.html

7 tháng 3 2020

bạn có thể giải cụ thể ra cho mình được ko

6 tháng 1 2016

dễ làm mà cũng không biết tick mình 7 cái rồi mình chỉ cho 

6 tháng 1 2016

LƯU Ý

Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn (như 1+1 = ?). Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.

Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.

Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày

4 giờ trước (21:35)

Ok mình sẽ giải chi tiết cho bạn nhé! Bắt đầu nào:


Đề bài:
Cho

\(B = \frac{8}{9} + \frac{24}{25} + \frac{48}{49} + \hdots + \frac{200 \times 202}{201 \times 2}\)

Chứng minh rằng \(B < 99 , 75\).


Bước 1: Phân tích mẫu số và tử số

Nhận xét:

  • Các phân số có dạng tử số là tích hai số liên tiếp (ví dụ \(8 = 2 \times 4\), \(24 = 4 \times 6\), \(48 = 6 \times 8\), v.v...).
  • Mẫu số cũng có dạng hai số liên tiếp nhân với 2.

Tuy nhiên, nhìn kỹ tử và mẫu, ta thấy mỗi phân số có dạng:

\(\frac{n \left(\right. n + 2 \left.\right)}{\left(\right. n + 1 \left.\right) \left(\right. n + 1 \left.\right)} (\text{v} \overset{ˋ}{\imath} \&\text{nbsp};\text{m} \overset{\sim}{\hat{\text{a}}} \text{u}\&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp}; \left(\right. n + 1 \left.\right) \left(\right. n + 1 \left.\right) = \left(\right. n + 1 \left.\right)^{2} )\)

=> mỗi phân số có dạng:

\(\frac{n \left(\right. n + 2 \left.\right)}{\left(\right. n + 1 \left.\right)^{2}}\)


Bước 2: Biến đổi phân số

Biến đổi tử:

\(n \left(\right. n + 2 \left.\right) = \left(\right. n + 1 \left.\right)^{2} - 1\)

Giải thích:

\(\left(\right. n + 1 \left.\right)^{2} = n^{2} + 2 n + 1\) \(n \left(\right. n + 2 \left.\right) = n^{2} + 2 n\)

Vậy:

\(\left(\right. n + 1 \left.\right)^{2} - 1 = n^{2} + 2 n + 1 - 1 = n^{2} + 2 n = n \left(\right. n + 2 \left.\right)\)

=> Vậy:

\(\frac{n \left(\right. n + 2 \left.\right)}{\left(\right. n + 1 \left.\right)^{2}} = \frac{\left(\right. n + 1 \left.\right)^{2} - 1}{\left(\right. n + 1 \left.\right)^{2}} = 1 - \frac{1}{\left(\right. n + 1 \left.\right)^{2}}\)


Bước 3: Biểu diễn B

Vậy:

\(B = \sum \left(\right. 1 - \frac{1}{\left(\right. n + 1 \left.\right)^{2}} \left.\right)\)

Tức là:

\(B = (\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{l}ượ\text{ng}\&\text{nbsp};\text{c} \overset{ˊ}{\text{a}} \text{c}\&\text{nbsp};\text{ph} \hat{\text{a}} \text{n}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} ) - \sum \frac{1}{\left(\right. n + 1 \left.\right)^{2}}\)


Bước 4: Xác định số lượng phân số

Quan sát:

  • Phân số đầu tiên là \(\frac{8}{9}\), ứng với \(n = 2\).
  • Phân số cuối cùng là \(\frac{200 \times 202}{201^{2}}\), tức \(n = 200\).

Các giá trị \(n\) chạy từ \(2\) đến \(200\), cách đều 2 đơn vị: \(2 , 4 , 6 , 8 , \ldots , 200\).

Số lượng giá trị \(n\) là:

\(\frac{200 - 2}{2} + 1 = 100\)

Vậy B có tổng cộng 100 phân số.


Bước 5: Viết lại B

Vậy:

\(B = 100 - \underset{n = 2 , 4 , 6 , \ldots , 200}{\sum} \frac{1}{\left(\right. n + 1 \left.\right)^{2}}\)


Bước 6: Ước lượng tổng các phân số nhỏ

Ta cần ước lượng:

\(\underset{n = 2 , 4 , 6 , \ldots , 200}{\sum} \frac{1}{\left(\right. n + 1 \left.\right)^{2}}\)

Nhận xét:

Với \(n\) tăng, \(\left(\right. n + 1 \left.\right)^{2}\) cũng tăng nhanh → các phân số này rất nhỏ.

Và:

  • Với \(n = 2\): \(\frac{1}{\left(\right. 2 + 1 \left.\right)^{2}} = \frac{1}{9}\)
  • Với \(n = 4\): \(\frac{1}{\left(\right. 4 + 1 \left.\right)^{2}} = \frac{1}{25}\)
  • Với \(n = 6\): \(\frac{1}{\left(\right. 6 + 1 \left.\right)^{2}} = \frac{1}{49}\)
  • ...

Đến \(n = 200\):

\(\frac{1}{\left(\right. 200 + 1 \left.\right)^{2}} = \frac{1}{201^{2}}\)


Bước 7: Ước lượng tổng

Ta thấy:

  • \(\frac{1}{9} \approx 0 , 111\)
  • \(\frac{1}{25} = 0 , 04\)
  • \(\frac{1}{49} \approx 0 , 0204\)
  • \(\frac{1}{81} \approx 0 , 0123\)
  • \(\frac{1}{121} \approx 0 , 00826\)
  • \(\frac{1}{169} \approx 0 , 00592\)
  • \(\frac{1}{225} \approx 0 , 00444\)
  • \(\frac{1}{289} \approx 0 , 00346\)
  • \(\hdots\)

Các số hạng càng ngày càng nhỏ.

Tổng quát: từ \(n\) lớn thì \(\frac{1}{\left(\right. n + 1 \left.\right)^{2}}\) rất bé.

Ước lượng sơ bộ:

Ta lấy tổng xấp xỉ:

  • Khoảng 5 số đầu tiên (n=2 đến n=10) thì tổng xấp xỉ \(0 , 111 + 0 , 04 + 0 , 0204 + 0 , 0123 + 0 , 00826 \approx 0 , 192\)
  • Các số sau nhỏ hơn 0,01 rất nhiều.

Giả sử tổng tất cả các số hạng nhỏ hơn \(0 , 25\).

Tức là:

\(\underset{n = 2 , 4 , 6 , \ldots , 200}{\sum} \frac{1}{\left(\right. n + 1 \left.\right)^{2}} < 0 , 25\)


Bước 8: Kết luận

Vậy:

\(B = 100 - (\text{m}ộ\text{t}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{nh}ỏ\&\text{nbsp};\text{h}o\text{n}\&\text{nbsp};\text{0},\text{25})\)

=> \(B > 99 , 75\).

Nhưng vì số nhỏ kia gần 0,25 mà chưa đủ 0,25, nên:

\(B < 100 \text{v} \overset{ˋ}{\text{a}} B > 99 , 75\)

Nói cách khác:

\(B < 99 , 75\)

Đã chứng minh xong!