Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,1-2+3-4+5-6+......+199-200\)
\(=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+.....+\left(199-200\right)\)( 100 cặp )
\(=-1+\left(-1\right)+\left(-1\right)+........+\left(-1\right)\)( 100 số hạng )
\(=-1.100\)
\(=-100\)
\(a.1-2+3-4+5-6+...+199-200\)
\(=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(199-200\right)\) (có tất cả \(200:2=100\)cặp)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
\(=\left(-1\right).200=-200\)
\(b.1+2-3-4+5+6-7-8+...+97+98-99-100\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\) (có \(100:4=25\)cặp)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=\left(-4\right).25=-100\)
\(c.1+\left(-6\right)+11+\left(-16\right)+...+21+\left(-26\right)\)
\(=\left[1+\left(-6\right)\right]+\left[11+\left(-16\right)\right]+...+\left[21+\left(-26\right)\right]\) (có tất cả \(26:2=13\)cặp)
\(=\left(-5\right)+\left(-5\right)+...+\left(-5\right)\)
\(=-5.13=-65\)
a, -1+3 - 5 + 7 - ...... +97 - 99
[ - 1+ 3] - [ 5 + 7] - .... - [ 95 + 97] - 99
[2 - 12] - ..... - [184 - 192] - 99
còn lại tự giải
a=100+98+96+...+2-97-95-...-1
ta thấy từ 1 dến 100 có 50 số lẻ, 50 số chẵn
theo bài ra , ta có : 49 số lẻ ( ko có số 99 )
49 số chẵn ( trừ số 100 )
ta lấy lần lượt 1 số chẵn trừ đi 1 số lẻ như sau:
A=100+(98-97)+(96-95)+...+(2-1)
= 100+1+1+...+1
= 100+1.49
= 100+49
= 149
B=1+2-3-4+5+6-7-8+9+10-11-12+...-299-330+301+302
= 1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+...+(298-299-300+301)+302
= 1+0+0+0+,...+0+302
= 303
Viết tập hợp a=x-y với x thuộc {26;70;38} y thuộc {17;41;98;49}
Cách 1 : A=100+98+96+...+2-97-95-...-1
A= 100 + (98-97) + (96-95) + ... +(2-1)
Từ 1 đến 98 có 98 số => có 98 : 2 cặp mà hiệu = 1
A = 100 + 49 x 1 = 149
B = 1+2-3-4+5+6-7-8+9+10-11-12+...-299-300+301+302
B = 1 + 2 + (302 - 300) + (301 - 299) + ... + (10 - 8) + (9-7) + (6-4) + (5-3)
Từ 3 đến 302 có 300 số => có 300 : 2 cặp hiệu = 2
B = 1 + 2 + 150 x 2 = 303
Cách 2 :
A = 100 + (98-97) + (96-95) + ……. + (2-1)
Ta thấy: 97; 95; ….; 1 có (97 – 1) : 2 + 1 = 49 (số hạng)
A = 100 + (1+1+1+….+1) (có 49 số 1).
A = 100 + 49 = 149
a, A = 100+(98-97)+(86-95)+....+(2-1) = 100+1+1+...+1 (49 số 1) = 149
b, B = 1+(2-3-4+5)+(6-7-8+9)+....(297-298-299+330)+331-332
= 1+0+0+....+0+331-332 = 0
Nếu đúng thì k mk nha
\(A=100+98+96+...+2-97-95-...1\)
\(A=100+\left(98-97\right)+\left(96-95\right)+...\left(2-1\right)\)
\(A=100+1+1+1+...+1\)
\(A=100+1.49\)
\(A=100+49\)
\(A=149\)
A =100+(98-97)+(96-95)+(94-93)+…+(2-1) ( Có 98:2=49( cặp hiệu) = 100+1+1+1+…+1(49 số hạng 1)
= 100+1×49
= 100+49
= 149
bn đăng r mà
Số số hạng:
(98 - 2 ):2 +1= 49
Tổng (98 +2) * 49 : 2= 2450
o
k ạ