2×4+4×6+...+48×50

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2\times 4+4\times 6+..+48 \times 50\)

\(=2\times (2+2) + 4\times (4+2) + ..+ 48\times(48+2)\)

\(= 2\times 2 + 2\times 2 + 4\times 4 + 4\times 2+..+48 \times 48 + 48 \times 2\)

\(=2\times(2+4+6+...+48) +(2\times2 +4\times 4+...+48\times 48)\)

\(=2\times 600 + 4(1+4+9+..+576)\)

\(= 1200 + 4\times 4900\)

\(=1200 + 19600 = 20 800\)

NV
5 tháng 4 2020

Làm kiểu 11:

Đây là tổng CSN với \(u_1=-1\) ; \(q=-5^2\)

Có tổng cộng \(\frac{50-0}{2}+1=26\) số hạng

Vậy \(S_n=u_1.\frac{q^n-1}{q-1}=-1.\frac{\left(-5^2\right)^{26}-1}{-5^2-1}=\frac{5^{52}-1}{26}\)

Làm kiểu lớp 6:

\(A=5^{50}-5^{48}+5^{46}+...+5^2-1\)

\(5^2A=25A=5^{52}-5^{50}+5^{48}+...+5^4-5^2\)

\(26A=5^{52}-1\Rightarrow A=\frac{5^{52}-1}{26}\)

7 tháng 12 2017

a) \(\left|-7^{50}\right|:7^{48}-\left|6^2\right|\)

\(=7^{50}:7^{48}-6^2\)

\(=7^{50-48}-6^2\)

\(=7^2-6^2\)

\(=49-36\)

\(=13\)

b) \(3x-9=\left|-21\right|\)

\(\Rightarrow3x-9=21\)

\(\Rightarrow3x=21+9\)

\(\Rightarrow3x=30\)

\(\Rightarrow x=30:3\)

\(\Rightarrow x=10\)

Vậy \(x=10\)

c) \(\left|x\right|-3=7\)

\(\Rightarrow\left|x\right|=7+3\)

\(\Rightarrow\left|x\right|=10\)

\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-10\end{matrix}\right.\)

Vậy \(x=10\) hoặc \(x=-10\)

d) \(\left|x-4\right|-2=\left|-5\right|\)

\(\Rightarrow\left|x-4\right|-2=5\)

\(\Rightarrow\left|x-4\right|=5+2\)

\(\Rightarrow\left|x-4\right|=7\)

Xét trường hợp 1: \(x-4=7\)

\(\Rightarrow x=7+4\)

\(\Rightarrow x=11\)

Xét trường hợp 2: \(x-4=-7\)

\(\Rightarrow x=-7+4\)

\(\Rightarrow x=-\left(7-4\right)\)

\(\Rightarrow x=-3\)

Vậy \(x=11\) hoặc \(x=-3\)

29 tháng 12 2017

a) ∣∣−750∣∣:748−∣∣62∣∣|−750|:748−|62|

=750:748−62=750:748−62

=750−48−62=750−48−62

=72−62=72−62

=49−36=49−36

=13=13

b) 3x−9=|−21|3x−9=|−21|

⇒3x−9=21⇒3x−9=21

⇒3x=21+9⇒3x=21+9

⇒3x=30⇒3x=30

⇒x=30:3⇒x=30:3

⇒x=10⇒x=10

Vậy x=10x=10

c) |x|−3=7|x|−3=7

⇒|x|=7+3⇒|x|=7+3

⇒|x|=10⇒|x|=10

⇒[x=10x=−10⇒[x=10x=−10

Vậy x=10x=10 hoặc x=−10x=−10

d) |x−4|−2=|−5||x−4|−2=|−5|

⇒|x−4|−2=5⇒|x−4|−2=5

⇒|x−4|=5+2⇒|x−4|=5+2

⇒|x−4|=7⇒|x−4|=7

Xét trường hợp 1: x−4=7x−4=7

⇒x=7+4⇒x=7+4

⇒x=11⇒x=11

Xét trường hợp 2: x−4=−7x−4=−7

⇒x=−7+4⇒x=−7+4

⇒x=−(7−4)⇒x=−(7−4)

⇒x=−3⇒x=−3

Vậy x=11x=11 hoặc x=−3

22 tháng 10 2019

a) \(47-\left[\left(45\cdot2^4-5^2\cdot12\right):14\right]\)

\(=47-\left[\left(45\cdot16-25\cdot12\right):14\right]\)

\(=47-\left[\left(720-300\right):14\right]\)

\(=47-\left[420:14\right]\)

\(=47-30=17\)

b) \(50-\left[\left(20-2^3\right):2+34\right]\)

\(=50-\left[\left(20-8\right):2+34\right]\)

\(=50-\left[12:2+34\right]\)

\(=50-\left[6+34\right]\)

\(=50-40=10\)

c) \(10^2-\left[60:\left(5^6:5^4-3\cdot5\right)\right]\)

\(=100-\left[60:\left(5^{6-4}-15\right)\right]\)

\(=100-\left[60:\left(5^2-15\right)\right]\)

\(=100-\left[60:\left(25-15\right)\right]\)

\(=100-\left[60:10\right]\)

\(=100-6=94\)

d) \(50-\left[\left(50-2^3\cdot5\right):2+3\right]\)

\(=50-\left[\left(50-8\cdot5\right):2+3\right]\)

\(=50-\left[\left(50-40\right):2+3\right]\)

\(=50-\left[10:2+3\right]\)

\(=50-\left[5+3\right]\)

\(=50-8=42\)

e) \(10-\left[\left(8^2-48\right)\cdot5+\left(2^3\cdot10+8\right)\right]:28\)

\(=10-\left[\left(64-48\right)\cdot5+\left(8\cdot10+8\right)\right]:28\)

\(=10-\left[16\cdot5+\left(80+8\right)\right]:28\)

\(=10-\left[80+88\right]:28\)

\(=10-168:28\)

\(=10-6=4\)

f) \(8697-\left[3^7:3^5+2\left(13-3\right)\right]\)

\(=8697-\left[3^{7-5}+2\cdot10\right]\)

\(=8697-\left[3^2+20\right]\)

\(=8697-\left[9+20\right]\)

\(=8697-29=8668\)

CHÚC BẠN HỌC TỐT!!!!!!!!!!!

16 tháng 3 2018

\(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)

\(P=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+1\)

\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)

\(P=50\left(\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)

\(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)

16 tháng 3 2018

p=\(\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+49\)

=\(\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(1+\frac{3}{47}\right)+...+\left(1+\frac{48}{2}\right)+\frac{50}{50}\)

=\(\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+...+\frac{50}{2}\)

=\(50\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)\)

p=50*S

\(\frac{S}{\text{p}}=\frac{1}{50}\)

20 tháng 4 2018

s=1,p=50

21 tháng 3 2017

Ta có: \(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)

\(P=\left(1+\dfrac{1}{49}\right)+\left(1+\dfrac{2}{48}\right)+\left(1+\dfrac{3}{47}\right)+...+\left(1+\dfrac{48}{2}\right)+1\)

\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)

\(P=50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(\Rightarrow\)\(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)}\)\(=\dfrac{1}{50}\)

6 tháng 4 2018

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

........

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

=> \(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n-1\right)}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\)

Đpcm 

14 tháng 3 2019

b)B=1/4(1/2^2+1/3^2+...+1/n^2)=1/4*A<1/4

20 tháng 3 2016

S = ( -1 ) + (-1) + ( -1 ) +.......... +(-1)      ( có 25 số -1)

S= (-1) . 25 

S = -25

20 tháng 3 2016

ta có 1-2+3-4+5-....-48+49-50

(1-2)+(3-4)+(5+6)+....(47-48)+(49-50)

(-1)+(-1)+(-1)+....+(-1) có 50 số -1

=> (-1).50=-50

1 tháng 7 2016

Bài làm:

Toán lớp 6