Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phần trong ngoặc.........phân tích cơ số ra thừa số nguyên tố:
\(125^3\cdot7^5-175^5:5=\left(5^3\right)^3\cdot7^5-\left(5^2\cdot7\right)^5:5=5^9\cdot7^5-5^9\cdot7^5=0\)
1.
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{99}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x-1}=\frac{98}{99}\)
\(1-\frac{1}{x-1}=\frac{98}{99}\)
\(\frac{1}{x-1}=1-\frac{98}{99}\)
\(\frac{1}{x-1}=\frac{1}{99}\)
\(\Rightarrow x-1=99\)
\(\Rightarrow x=99+1=100\)
b) \(x-\frac{20}{11.13}-\frac{20}{13.15}-\frac{20}{15.17}-...-\frac{20}{53.55}=\frac{3}{11}\)
\(x-\left(\frac{20}{11.13}+\frac{20}{13.15}+\frac{20}{15.17}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(x-\left[10.\left(\frac{1}{11}-\frac{1}{13}\right)+10.\left(\frac{1}{13}-\frac{1}{15}\right)+10.\left(\frac{1}{15}-\frac{1}{17}\right)+...+10.\left(\frac{1}{53}-\frac{1}{55}\right)\right]=\frac{3}{11}\)
\(x-\left[10.\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)\right]=\frac{3}{11}\)
\(x-\left[10.\left(\frac{1}{11}-\frac{1}{55}\right)\right]=\frac{3}{11}\)
\(x-10.\frac{4}{55}=\frac{3}{11}\)
\(x-\frac{8}{11}=\frac{3}{11}\)
\(\Rightarrow x=\frac{3}{11}+\frac{8}{11}=1\)
c) 5x + 2 . 5x + 23 = 83
5x . ( 1 + 2 ) + 8 = 83
5x . 3 = 83 - 8
5x . 3 = 75
5x = 75 : 3
5x = 25
\(\Rightarrow\)5x = 52
\(\Rightarrow\)x = 2
2.
Ta thấy \(2016^{2016}>2016^{2016}-3\)
\(\Rightarrow B=\frac{2016^{2016}}{2016^{2016}-3}>\frac{2016^{2016}+2}{2016^{2016}-3+2}=\frac{2016^{2016}+2}{2016^{2016}-1}=A\)
\(\Rightarrow A< B\)
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{99}\)
Ta có \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{99}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{98}{99}\)(áp dụng công thức)
= \(1-\frac{1}{x+1}=\frac{98}{99}\)
= \(\frac{1}{x+1}=1-\frac{98}{99}\)(quy tắc tìm số trừ)
= \(\frac{1}{x+1}=\frac{1}{99}\Rightarrow\frac{1}{x+1}=\frac{1}{98+1}\Rightarrow x=98\)
Vậy x = 98 :)
Còn nữa, công thức mà mình áp dụng là: \(\frac{a}{b.c}=\frac{1}{b}-\frac{1}{c}\)nếu \(a=c-b\)
D. Tìm x thuộc Z biết
x+(x+1)+(x+2)+....+2016+2017=2017
=> ( x + x + x + ..+ x ) + ( 1 + 2 + 3+...+2016 + 2017 ) = 2017
<=> 2017x + 2035153 = 2017
=> 2017x = -2033136
=> x = -1008
Vậy ...
cảm ơn bạn nhưng bạn có biết những câu hỏi còn lại ko
`#3107`
b)
`2.3^x = 162`
`\Rightarrow 3^x = 162 \div 2`
`\Rightarrow 3^x = 81`
`\Rightarrow 3^x = 3^4`
`\Rightarrow x = 4`
Vậy, `x = 4`
c)
`(2x - 15)^5 = (2 - 15)^3`
\(\Rightarrow \)`(2x - 15)^5 - (2x - 15)^3 = 0`
\(\Rightarrow \)`(2x - 15)^3 . [ (2x - 15)^2 - 1] = 0`
\(\Rightarrow\left[{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-15=0\\\left(2x-15\right)^2=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x=15\\\left(2x-15\right)^2=\left(\pm1\right)^2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\2x-15=1\\2x-15=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\2x=16\\2x=-14\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=8\\x=-7\end{matrix}\right.\)
Vậy, `x \in`\(\left\{-7;8;\dfrac{15}{2}\right\}.\)
`d)`
\(3^{x+2}-5.3^x=?\) Bạn ghi tiếp đề nhé!
`e)`
\(7\cdot4^{x-1}+4^{x-1}=23?\)
\(4^{x-1}\cdot\left(7+1\right)=23\\ \Rightarrow4^{x-1}\cdot8=23\\ \Rightarrow4^{x-1}=\dfrac{23}{8}\)
Bạn xem lại đề!
`f)`
\(2\cdot2^{2x}+4^3\cdot4^x=1056\)
\(\Rightarrow2\cdot2^{2x}+\left(2^2\right)^3\cdot\left(2^2\right)^x=1056\\ \Rightarrow2\cdot2^{2x}+2^6\cdot2^{2x}=1056\\ \Rightarrow2^{2x}\cdot\left(2+2^6\right)=1056\\ \Rightarrow2^{2x}\cdot66=1056\\ \Rightarrow2^{2x}=1056\div66\\ \Rightarrow2^{2x}=16\\ \Rightarrow2^{2x}=2^4\\ \Rightarrow2x=4\\ \Rightarrow x=2\)
Vậy, `x = 2`
_____
\(10 -{[(x \div 3+17) \div 10+3.2^4] \div 10}=5\)
\(\Rightarrow\left[\left(x\div3+17\right)\div10+48\right]\div10=10-5\)
\(\Rightarrow\left[\left(x\div3+17\right)\div10+48\right]\div10=5\)
\(\Rightarrow\left(x\div3+17\right)\div10+48=50\)
\(\Rightarrow\left(x\div3+17\right)\div10=2\)
\(\Rightarrow x\div3+17=20\)
\(\Rightarrow x\div3=3\\ \Rightarrow x=9\)
Vậy, `x = 9.`