Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\sqrt{2^3\cdot3^4\cdot5^5\cdot6^6\cdot7^7}}{2^2\cdot3^2\cdot5^6\cdot6^3\cdot7^3}=\frac{2\cdot3^2\cdot5^2\cdot6^3\cdot7^3\cdot\sqrt{2\cdot5\cdot7}}{2^2\cdot3^2\cdot5^6\cdot6^3\cdot7^3}=\frac{\sqrt{2\cdot5\cdot7}}{2\cdot5^4}=\frac{\sqrt{70}}{1250}\)
Nếu quá dài ko trả lời hết thì các p cki cần làm nhanh giúp mk câu : 1.8 ; 2.2 đến 2.5 và 3.2 đến 3.7 thôi cũng dk . mk thật lòng biết ơn .
Câu 1.1:
Nghiệm lớn nhất của phương trình x4 - 29x2 + 100 = 0 là x = ...........phương trình này vô nghiệm nhé
Câu 1.3:
Một hình trụ có diện tích xung quanh là 80π cm2 và thể tích là 160π cm2.
Bán kính đáy của hình trụ này là R = .......4.... cm.
Câu 1.4:
Khi phương trình x2 - 3x + m = 0 có một nghiệm là x = 1,25 thì nghiệm còn lại của phương trình là x = ........1,75.......
Câu 1.8:
Hai tổ cùng làm chung một công việc trong 12 giờ thì xong. Nhưng hai tổ cùng làm trong 4 giờ thì tổ 1 đi làm việc khác, tổ 2 làm nốt trong 10 giờ mới xong việc. Nếu làm riêng thì tổ 2 mất .....60.. giờ sẽ xong việc.
Câu 1.9
Nghiệm nguyên của phương trình: x4 + 5x3 - 12x2 + 5x + 1 = 0 là x = .....1.......
Câu 1.10:
Nghiệm âm của phương trình (x2 + 3x + 2)(x2 + 7x + 12) = 120 là x = ...1.......
Bài 2: Đi tìm kho báu
Câu 2.2:
Nghiệm nguyên của phương trình: 2x4 - 3x3 - 7x2 + 12x = 4 là .....1......
Câu 2.3:
Cho tam giác ABC vuông cân tại A. Trên nửa mặt phẳng bờ BC không chứa điểm A vẽ tam giác cân BCD có góc CBD = 90o. Biết độ dài cạnh AC = 3√5cm.
Độ dài đoạn AD = .....Căn 6...... cm.
Câu 2.4:
Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y = mx + m - 1.
Giá trị m nguyên để (d) tạo với 2 trục tọa độ tam giác có diện tích 2 (đvdt) là ....1.......
Câu 2.5:
Cho a, b, c > 0 thỏa mãn a + b + c = 1.
Giá trị nhỏ nhất của biểu thức A = bc/a + ca/b + ab/c bằng ......3.....
Bài 3: Đỉnh núi trí tuệ
Câu 3.1:
Cho đường tròn (O; 13cm). Biết khoảng cách từ tâm O đến dây PQ bằng 5cm.
Độ dài dây PQ = .....24......cm.
Câu 3.2:
Cho hàm số y = 1/2 .x2 có đồ thi là (P).
Trên (P) lấy hai điểm A, B có hoành độ lần lượt là -1; 2.
Phương trình đường thẳng AB có tung độ gốc là .......2.....
Câu 3.3:
Phương trình x2 - 2(m + 2)x + 2m - 1 = 0 có hai nghiệm là độ dài hai cạnh góc vuông của một tam giác vuông có cạnh huyền bằng √34.
Khi đó m = ...Chịu........
Câu 3.4:
Một đa giác có số đường chéo nhiều hơn số cạnh là 12. Số cạnh của đa giác là ...8.......
Câu 3.5:
Cho parabol (P): y = ax2 và đường thẳng (d) có hệ số góc bằng 2. Biết (d) và (P) có một điểm chung duy nhất là A có hoành độ bằng 2. Khi đó tung độ của điểm A là ...Chịu.........
Câu 3.6:
Cho phương trình x2 - 5x - 1 = 0 có các nghiệm x1, x2. Biểu thức B = (x13 - 5x12 + 2)(x23 - 5x22 + 2) có giá trị là ......Chịu.....
Câu 3.7:
Cho a, b > 0 và 3a + 5b = 12.
Giá trị lớn nhất của biểu thức P = ab là ...Chịu nốt........
Nhập kết quả dưới dạng phân số tối giản.
\(a,\sqrt{3^2}-\sqrt{\left(-7\right)^2}+\sqrt{\left(-1\right)^2}\)
\(=3-7+1\)
\(=-3\)
\(b,-2\sqrt{\left(-2\right)^2}+3\sqrt{\left(-5\right)^2}+\sqrt{3^2}\)
\(=-2.2+3.5+3\)
\(=-4+15+3\)
\(=14\)
\(c,\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\)
\(=\left|2-\sqrt{2}\right|+\left|2+\sqrt{2}\right|\)
\(=2-\sqrt{2}+2+\sqrt{2}\)
\(=4\)
\(d,\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(=\left|3-\sqrt{2}\right|-\left|1-\sqrt{2}\right|\)
\(=3-\sqrt{2}-\left(-1+\sqrt{2}\right)\)
\(=3-\sqrt{2}+1-\sqrt{2}\)
\(=-2\sqrt{2}+4\)
A = 12 - 22 + 32 - 42 + 52 - 62 + 72 - .......- 582 + 592
A = 12 + ( 32 - 22) + ( 52 - 42) + (72 - 62) +....+ ( 592 - 582)
A = 1 + ( 3-2)(2+3) + (5-4)(4+5) + (7-6)(6+7)+....+(59-58)(58+59)
A = 1 + 2 + 3 + 4 + 5 + 6 + 7 + ....+ 58 + 59
A = ( 59 + 1).{ (59 - 1): 1 + 1 } : 2
A = 1770
B = \(\dfrac{2^{2016}-2^{2015}+2^{2014}-2^{2013}+2^{2012}-2^{2011}+2^{2010}-2^{2009}}{2^{2008}}\)
Đặt tử số là A
ta có
A = 22016 - 22015+22014 - 22013 + 22012 - 22011 + 22010- 22009
2 A= 22017- 22016 + 22015- 22014 +22013-22012 + 22011 - 22010
2A + A = 22017 - 22009
3A = 22017 - 22009
A = (22017 - 22009):3
B = A : 8 = (22017- 22009) : 3 : 8
B = (22017 - 22009) : 24
Áp dụng BĐT phụ \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)
\(A\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{1}{2}\left(1+\dfrac{4}{1}\right)^2=\dfrac{25}{2}\)
Dấu "=" \(x=y=\dfrac{1}{2}\)
A=\(\frac{-2}{3.7}\)+\(\frac{-2}{7.11}\)+\(\frac{-2}{11.15}\)+....+\(\frac{-2}{97.101}\)
A=\(\frac{-1}{2}\).(\(\frac{4}{3.7}\)+\(\frac{4}{7.11}\)+\(\frac{4}{11.15}\)+.....+\(\frac{4}{97.101}\))
A=\(\frac{-1}{2}\)(\(\frac{1}{3}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{11}\)+\(\frac{1}{11}\)-\(\frac{1}{15}\)+....+\(\frac{1}{97}\)-\(\frac{1}{101}\))
A=\(\frac{-1}{2}\).(\(\frac{1}{3}\)-\(\frac{1}{101}\))
A=\(\frac{-1}{2}\).\(\frac{104}{303}\)=\(\frac{-52}{303}\)