Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}.\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}\)
\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}.\)
\(=\frac{3-1}{3\left(3-1\right)}\)
\(=\frac{2}{6}=\frac{1}{3}\)
Study well
\(\frac{3}{4}x-\frac{2}{3}.\left(\frac{3}{5}x-\frac{6}{5}\right)=\frac{1}{7}-\frac{2}{9}x\)
\(\frac{3}{4}x-\frac{2}{5}x+\frac{4}{5}=\frac{1}{7}-\frac{2}{9}x\)
\(\left(\frac{3}{4}-\frac{2}{5}\right)x+\frac{4}{5}=\frac{1}{7}-\frac{2}{9}x\)
\(\left(\frac{15}{20}-\frac{8}{20}\right)x+\frac{4}{5}=\frac{1}{7}-\frac{2}{9}x\)
\(\frac{7}{20}x+\frac{4}{5}=\frac{1}{7}-\frac{2}{9}x\)
\(\frac{1}{7}-\frac{4}{5}=\frac{2}{9}x-\frac{7}{20}x\)
\(\frac{5}{35}-\frac{28}{35}=\left(\frac{2}{9}-\frac{7}{20}\right)x\)
\(\frac{-23}{35}=\left(\frac{40}{180}-\frac{63}{180}\right)x\)
\(\frac{-23}{180}x=\frac{-23}{35}\)
\(x=\frac{-23}{35}:\frac{-23}{180}\)
\(x=\frac{-23}{35}.\frac{180}{-23}\)
\(x=\frac{180}{35}\)
Vậy \(x=\frac{180}{35}\)
Chúc bạn học tốt
a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)
\(\Leftrightarrow\frac{13}{36}x=-\frac{8}{45}\)
\(\Rightarrow x=-\frac{32}{65}\)
b) \(\left(\frac{2}{3}x-\frac{1}{2}\right).\left(-\frac{2}{3}\right)+\frac{1}{5}=-\frac{3}{4}\)
\(\Leftrightarrow-\frac{4}{9}x+\frac{1}{3}+\frac{1}{5}=-\frac{3}{4}\)
\(\Leftrightarrow\frac{4}{9}x=\frac{77}{60}\)
\(\Rightarrow x=\frac{231}{80}\)
a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)
=> \(\frac{4}{9}x-\frac{1}{3}x+\frac{2}{5}-\frac{2}{9}+\frac{1}{4}x=0\)
=> \(\left(\frac{4}{9}x-\frac{1}{3}x+\frac{1}{4}x\right)+\left(\frac{2}{5}-\frac{2}{9}\right)=0\)
=> \(\frac{13}{36}x+\frac{8}{45}=0\)
=> \(\frac{13}{36}x=-\frac{8}{45}\)
=> \(x=-\frac{32}{65}\)
b) \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}+\frac{1}{5}=\frac{-3}{4}\)
=> \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}=-\frac{19}{20}\)
=> \(\frac{2}{3}x-\frac{1}{2}=\left(-\frac{19}{20}\right):\left(-\frac{2}{3}\right)=\left(-\frac{19}{20}\right)\cdot\left(-\frac{3}{2}\right)=\frac{57}{40}\)
=> \(\frac{2}{3}x=\frac{57}{40}+\frac{1}{2}=\frac{77}{40}\)
=> \(x=\frac{77}{40}:\frac{2}{3}=\frac{77}{40}\cdot\frac{3}{2}=\frac{231}{80}\)
a. \(\frac{1}{2}\) - ( \(\frac{1}{3}\) + \(\frac{1}{4}\) ) < x < \(\frac{1}{48}\) - ( \(\frac{1}{16}\) - \(\frac{1}{6}\) )
\(\frac{1}{2}\) - \(\frac{7}{12}\) < x < \(\frac{1}{48}\) - \(\frac{-5}{48}\)
\(\frac{-1}{12}\) < x < \(\frac{1}{8}\)
Đề bài yêu cầu tìm x thuộc tập hợp gì bạn ơi. Bạn viết thiếu rồi .
a) (x + 2)2 = 81
=> (x + 2)2 = 92
=> \(\orbr{\begin{cases}x+2=-9\\x+2=9\end{cases}}\Rightarrow\orbr{\begin{cases}x=-11\\x=7\end{cases}}\)
b) 5x + 5x + 2 = 650
=> 5x + 5x . 52 = 650
=> 5x + 5x . 25 = 650
=> 5x (25 + 1) = 650
=> 5x . 26 = 650
=> 5x = 650 : 26
=> 5x = 25
=> 5x = 52
=> x = 2
d) (2x - 1)2 - 5 = 20
=> (2x - 1)2 = 25
=> (2x - 1)2 = 52
=> \(\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}\Rightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)
g) (x - 1)3 = (x - 1)
=> (x - 1)3 - (x - 1) = 0
=> (x - 1) .[(x - 1)2 - 1] = 0
=> \(\orbr{\begin{cases}x-1=0\\\left(x-1\right)^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^2=1^2\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x-1=\pm1\end{cases}}}\)
Nếu x - 1 = 1
=> x = 2
Nếu x - 1 = -1
=> x = 0
Vậy \(x\in\left\{0;1;2\right\}\)
Bài giải
Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\) ; \(\frac{1}{3^2}< \frac{1}{2\cdot3}\) ; ..... ; \(\frac{1}{9^2}< \frac{1}{8\cdot9}\)
\(\Rightarrow A=\text{ }\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+..+\frac{1}{8\cdot9}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\) \(^{\left(1\right)}\)
Ta có : \(\frac{1}{2^2}>\frac{1}{2\cdot3}\) ; \(\frac{1}{3^2}>\frac{1}{3\cdot4}\) ; ..... ; \(\frac{1}{9^2}>\frac{1}{9\cdot10}\)
\(\Rightarrow A=\text{ }\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\) \(^{\left(2\right)}\)
Từ \(^{\left(1\right)}\) và \(^2\)
\(\Rightarrow\text{ }\frac{2}{5}< A< \frac{8}{9}\) \(\left(ĐPCM\right)\)
Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)
\(=\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+...+\frac{1}{9\times9}< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{8\times9}\)
\(=\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+...+\frac{9-8}{8\times9}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\)
\(\Rightarrow A< \frac{8}{9}\left(1\right)\)
Ta có: \(A=\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+...+\frac{1}{9\times9}>\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\)
\(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+...+\frac{10-9}{9\times10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(\Rightarrow A>\frac{2}{5}\left(2\right)\)
Từ (1) và (2) --> \(\frac{2}{5}< A< \frac{8}{9}\left(đpcm\right)\)
Các bạn nhớ k đúng mình nha (nếu đúng)
a/ \(\left(\frac{-2}{3}\right)^4:24=\frac{16}{81}:24=\frac{2}{243}\)
b/ \(\left(\frac{3}{4}\right)^3.4^4=\frac{27}{64}.256=108\)
c/ \(\frac{3.0,8^5}{2,4^4}=\frac{3.0,32768}{33,1776}=\frac{0,98304}{33,1776}=\frac{4}{135}\)
d/ \(\frac{3^3-0,9^5}{2,7^4}=\frac{27-0,59049}{53,1441}=\frac{26,40951}{53,1441}=0,4969415231\)
e/\(\left(\frac{-7}{2}\right)^2+\left(\frac{-3}{4}\right)^3.64-\left(\frac{-61}{5}\right)\)
\(=\frac{49}{4}+\frac{-27}{64}.64+\frac{61}{5}\)
\(=12,25-27+12,2\)
\(=-2,55\)
f/ \(\frac{2^4.2^6}{\left(2^5\right)^2}-\frac{2^5.15^3}{6^3.10^2}=\frac{2^{10}}{2^{10}}-\frac{2^5.5^3.3^3}{2^3.3^3.5^2.2^2}\)
\(=1-\frac{2^5.5^3.3^3}{2^5.3^3.5^2}=1-\frac{5}{1}=-4\)
\(\)
chúc bạn học tốt
71.00000565
71.00000565