Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2301= 2^300 *2 = (2^3)^100 *2 =8^100 *2
3^201= 3^200 *3 = (3^2)^100 *3 = 9^100 *3
Do 8<9 =) 8^100 < 9^100 ; 2<3 =) 8^100 *2 < 9^100 *3 =) 2^301 < 3^201
Thy Trần: Nếu làm thế thì sẽ bị đổi dấu -> không thể kết luận 3201 > 2301 =>Sai => phải dùng cách khác.Có một cách đơn giản mà sao không ai nghĩ tới nè:
Ta có: \(3^{201}=3^{200}.3^1\)
\(2^{301}=2^{300}.2^1\)
Ta lại có; \(3^1>2^1\)(1),ta sẽ so sánh: \(3^{200}\) và \(2^{300}\)
Ta có: \(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}=\left(2^3\right)^{100}=2^{300}\)
Do đó \(3^{200}>2^{300}\) (2)
Áp dụng t/c Nếu a < b, c < d thì ac < bd .Từ (1) và (2),ta có: \(3^{200}.3^1>2^{300}.2^1\Leftrightarrow3^{201}>2^{301}\)
Ta có : 22017=2*22016=2*(22)1008=2*41008. Vì 41008>31008=>2*41008>31008hay 22017>31008
Bài làm :
\(1\text{)}\hept{\begin{cases}5^{30}=\left(5^3\right)^{10}=125^{10}\\3^{50}=\left(3^5\right)^{10}=243^{10}\end{cases}}\Rightarrow5^{30}< 3^{50}\)
\(2\text{)}\hept{\begin{cases}27^3=\left(3^3\right)^3=3^9\\9^5=\left(3^2\right)^5=3^{10}\end{cases}}\Rightarrow27^3< 9^5\)
\(3\text{)}14^{40}>14^{20}\)
\(4\text{)}\hept{\begin{cases}2< 12\\15< 16\end{cases}}\Rightarrow2^{15}< 12^{16}\)
a/ 40^20=40^2.10=1600^10
3^30=3^3.10=27^10
vì 1600^10>27^10 nên 40^20>3^30
a) 40^20=(4^2)^10=16^10
30^30=(3^3)^10=27610
Vì 16<27=>16^10<27^10 hay 4^20<3^30
b) mk chịu
c) Đặt A= 1/3+1/3^2+1/3^3+...+1/3^99
=>3A=3( 1/3+1/3^2+1/3^3+...+1/3^99)
=>3A=1+1/3+1/3^2+...+1/3^98
=>3A-A=(1+1/3+1/3^2+...+1/3^98)-(1/3+1/3^2+1/3^3+...+1/3^99)
=>2A=1-1/3^99
=>A=(1-1/3^99)/2
=>A=1/2 - (1/3^99)/2 < 1/2=>a<1/2
Ta có: 2301 = 2300 . 2 = (23)100 . 2 = 8100 . 2
3201 = 3200 .3 = (32)100 .3 = 9100 .3
Do 8 < 9 => 8100< 9100 và 2 < 3 => 8100 .2 < 9100 .3 => 2301< 3201