Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 210 = 22.5 = 322 > 102
b, 2300 = 2100.3 = 6100
3200 = 32.100 = 9100
6100 < 9100
nên : 3200 > 2300
So sánh :
b) 2^300 và 3^200
Ta có :
2^300 = ( 2^3 )^100 = 8^100
3^200 = ( 3^2 )^100 = 9^100
Vì 8^100 < 9^100 => 2^300 < 3^200
Vậy 2^300 < 3^200
a) \(7.2^{13}< 8.2^{13}=2^3.2^{13}=2^{16}\)
b) \(3^{2n}=\left(3^2\right)^n=9^n>8^n=\left(2^3\right)^n=2^{3n}\)
c) \(21^{15}=\left(3.7\right)^{15}=3^{15}.7^{15}\) (1)
\(27^5.49^8=\left(3^3\right)^5.\left(7^2\right)^8=3^{15}.7^{16}\) (2)
(1) và (2) suy ra \(21^{15}< 27^3.49^8\)
d) \(3^{500}=3^{5.100}=\left(3^5\right)^{100}=234^{100}\) (3)
\(7^{300}=\left(7^3\right)^{100}=343^{100}\) (4)
Từ (3) và (4) suy ra \(3^{500}< 7^{300}\)
e) \(3^{21}=3.3^{20}=3.\left(3^2\right)^{10}=3.9^{100}\) (5)
\(2^{31}=2.2^{30}=2.\left(2^3\right)^{10}=2.8^{100}< 3.9^{100}\) (6)
Từ (5) và (6) suy ra \(3^{21}>2^{31}\)
g) \(202^{303}=\left(2.101\right)^{3.101}=\left(2^3\right)^{101}.101^{3.101}=8^{101}.101^{3.101}=8^{101}.101^{101}.101^{2.101}=808^{101}.101^{2.101}\)
\(303^{202}=\left(3.101\right)^{2.101}=\left(3^2\right)^{101}.101^{2.101}=9^{101}.101^{2.101}\)
Suy ra \(202^{303}>303^{202}\)
Ta có : 31^2 = 961 < 1000 và 2^10 = 1024 > 1000.Vậy :
31^2 < 2^10
---> 31^4 < 2^20 = (2^4)^5 = 16^5 < 17^5
---> 31^12 < 17^15 = 17.17^14
---> 31^11 < (17/31).17^14 < 17^14
Vậy 31^11 < 17^14.
Ta có : 31^2 = 961 < 1000 và 2^10 = 1024 > 1000.Vậy :
31^2 < 2^10
---> 31^4 < 2^20 = (2^4)^5 = 16^5 < 17^5
---> 31^12 < 17^15 = 17.17^14
---> 31^11 < (17/31).17^14 < 17^14
Vậy 31^11 < 17^14.
chúc bn hok tốt @_@
a,\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
Vì 9100>8100 nên 3200>2300
b,\(3^{375}=3^{5.75}=\left(3^5\right)^{75}=243^{75}\)
\(5^{225}=5^{3.75}=\left(5^3\right)^{75}=125^{75}\)
Vì 24375>12575 nên 3375>5225
c,\(99^{20}=99^{2.10}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
Vật 9920<999910
d,\(2^{91}=2^{13.7}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=5^{5.7}=\left(5^5\right)^7=3125^7\)
Vì 81927>31257 nên 291>535
1.
\(3^{500}=\left(3^5\right)^{100}\)
\(7^{300}=\left(7^3\right)^{100}\)
\(3^5< 7^3\Leftrightarrow3^{500}< 7^{300}\)
\(3^{500}=\left(3^5\right)^{100}\)
\(7^{300}=\left(7^3\right)^{100}\)
35 < 73 => 3500 <7300
a) \(16^{12}=4^{2\cdot12}=4^{24}\)
\(64^8=4^{4\cdot8}=4^{32}\)
=>\(64^8>16^{12}\)
a) ta cs: 3645 - 3644 = 3644.(36-1) =3644.35
3644 - 3643 = 3643.35
=> 3645 - 3644 > 3644 - 3643
b) ta cs: 3450 = (33)150 = 27150
5300 = (52)150 = 25150
=> 3450 > 5300
c) ta cs: 3452 = 345.345 = 345.(342+ 3) = 345.342 + 345.3
342 . 348 = 342.(345+3) = 342.345 + 342.3
=> 3452 > 342.348
d) ta cs: (1+2+3+4)2 = 102 =100
13 + 23 + 33 + 43 = 100
=>...
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=\left(7^3\right)^{100}=343^{100}\)
\(243^{100}< 343^{100}\Rightarrow3^{500}< 7^{300}\)
Ta có: 2^300 = (2^3)^100 = 8^100
3^200 = (3^2)^100 = 9^100
Mà 8 < 9
=> 2^300 < 3^200