Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{180}{12}=15\)
Do đó: a=45; b=60; c=75
Bạn tham khảo ở đây: https://olm.vn/hoi-dap/detail/1284076363999.html
ΔABCΔABC có ˆA+ˆB+ˆC=180oA^+B^+C^=180o
Theo để bài ˆA3=ˆB4=ˆC5A^3=B^4=C^5
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
ˆA3=ˆB4=ˆC5=ˆA+ˆB+ˆC3+4+5=180o12=15oA^3=B^4=C^5=A^+B^+C^3+4+5=180o12=15o
hay: ˆA3=15o⇒ˆA=15o.3=45oA^3=15o⇒A^=15o.3=45o
ˆB4=15o⇒ˆB=15o.4=60oB^4=15o⇒B^=15o.4=60o
ˆC5=15o⇒ˆC=15o.5=75o
`a,` Gọi số đo `3` góc của Tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`
Tỉ lệ thức biểu diễn mối quan hệ giữa số đo `3` góc trong Tam giác `ABC` là `x/2=y/3=z/4`
`b,` Tổng số đo `3` góc trong `1` tam giác là `180^0`
`-> x+y+z=180`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/3=z/4=(x+y+z)/(2+3+4)=180/9=20`
`-> x/2=y/3=z/4=20`
`->x=20*2=40, y=20*3=60, z=20*4=80`
Vậy, số đo của `3` góc trong Tam giác `ABC` lần lượt là `40^0, 60^0, 80^0.`
a:
Đặt \(a=\widehat{A};b=\widehat{B};c=\widehat{C}\)
a/2=b/3=c/4
b: a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20
=>a=40; b=60; c=80
Gọi số đo 3 góc của \(\Delta ABC\)lần lượt là a; b; c (a; b; c \(\inℤ\)/ a+b+c=1800 )
Vì a; b; c lần lượt tỉ lệ với 3; 4; 5 nên:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Áp dụng t/c DTSBN, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)\(=\frac{a+b+c}{3+4+5}\)\(=\frac{180}{12}=15\)
=> a=15.3=45
b=15.4=60
c= 15.5=75
Đ/s: ...
a) Ta có độ dài các cạnh tam giác PQR theo thứ tự từ nhỏ đến lớn là PQ, QR, RP
Vì trong tam giác góc đối diện cạnh lớn hơn thì lớn hơn
Nên ra có các góc tam giác PQR theo thứ tự từ nhỏ đến lớn là R, P, Q
b) Ta có số đo các góc theo tứ tự từ nhỏ đến lớn của tam giác ABC là A, C, B
Vì trong tam giác góc đối diện cạnh lớn hơn thì lớn hơn
Nên ta có các cạnh tam giác ABC theo thứ tự từ nhỏ đến lớn là a, c, b.
\(A^o,B^o,C^o\)lần lượt tỉ lệ với 7:7:16
\(\Rightarrow\frac{A^o}{7}=\frac{B^o}{7}=\frac{C^o}{16}\)và \(A^o+B^o+C^o=180^o\)( Tổng 3 góc trong của tam giác )
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{A^o}{7}=\frac{B^o}{7}=\frac{C^o}{16}=\frac{A^o+B^o+C^o}{7+7+16}=\frac{180^o}{30}=6^o\)
=> góc A = 42o , góc B = 42o , góc C = 96o
Ta có A,B,C tỉ lệ với 1,2,3
==>A/1=B/2=C/3
==> A+B+C/1+2+3=180ĐỘ/6=30 ĐỘ
Ta có: góc A, góc B, góc C lần lượt tỉ lệ vs 1;2;3
=> \(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}\)Và góc A + góc B + góc C= 180 độ(định lí tổng 3 góc trog 1 tam giác)
Áp dụng t/c của dãy tỉ số= nhau ta có:
\(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{A+B+C}{1+2+3}=\frac{180^o}{6}=30^o\)
Khi đó : \(\frac{A}{1}=30^o\Rightarrow A=30\)
Làm tương tự vs góc B và góc C
-tổng 3 góc của 1 tam giác=180
-gọi ^A,^B,^C lần lượt là x,y,z
-áp dụng tính chất dãy tỉ số bằng nhau:
x/1=y/2=z/3=x+y+z/1+2+3=180/6=30
suy ra:x/1=30 suy ra x=30
suy ra:y/2=30 suy ra y=60
suy ra:z/3=30 suy ra z=90
suy ra ^A=30o;^B=60o;^C=90o
Theo bài toán ta có:
\(\dfrac{A}{1}\)\(=\)\(\dfrac{B}{2}\)\(=\)\(\dfrac{C}{3}\) và A\(+\)B\(+\)C\(=\)180°(vì tổng ba góc của một tam giác bằng 180°)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{A}{1}\)\(+\)\(\dfrac{B}{2}\)\(+\)\(\dfrac{C}{2}\)\(=\dfrac{A+B+C}{1+2+3}\)\(=\)\(\dfrac{180}{6}\)\(=\)30°
\(\Rightarrow\)\(\dfrac{A}{1}\)\(=\)30°. 1\(=\) 30°
\(\dfrac{B}{2}\)\(=\) 30°. 2\(=\) 60°
\(\dfrac{C}{3}\)\(=\)30°. 3\(=\)90°
Vậy số đo của ba góc A, B, C lần lượt là 30°, 60° và 90°
a) Gọi a, b, c lần lượt là số đo của ∠A, ∠B, ∠C (a, b, c > 0)
Do số đo các góc: ∠A, ∠B, ∠C lần lượt tỉ lệ với 2; 4; 6 nên:
a/2 = b/4 = c/6
Do tổng số đo các góc của tam giác ABC là 180⁰ nên:
a + b + c = 180⁰
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
a/2 = b/4 = c/6 = (a + b + c)/(2 + 4 + 6) = 180/12 = 15
a/2 = 15 ⇒ a = 15.2 = 30
b/4 = 15 ⇒ b = 15.4 = 60
c/6 = 15 ⇒ c = 15.6 = 90
Vậy số đo các góc: ∠A, ∠B, ∠C lần lượt là 30⁰; 60⁰; 90⁰
b) Do ∠A = 30⁰; ∠B = 60⁰; ∠C = 90⁰
⇒ ∠A < ∠B < ∠C
⇒ BC < AC < AB (quan hệ giữa góc và cạnh đối diện trong tam giác)
a) Gọi a, b, c lần lượt là số đo của ba góc �, �, �,(�, �, �∈�∗A, B, C,(a, b, c∈N∗ đơn vị:∘)∘). Vì số đo các góc �,�,�A,B,C lần lượt tỉ lệ với các số 2;4;62;4;6. nên:
�2=�4=�62a=4b=6c và �+�+�=180∘a+b+c=180∘
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
�2=�4=�6=�+�+�2+4+6=18012=15∘2a=4b=6c=2+4+6a+b+c=12180=15∘
Suy ra:
�2=15∘⇒�=30∘;�4=15∘⇒�=60∘;�6=15∘⇒�=90∘2a=15∘⇒a=30∘;4b=15∘⇒b=60∘;6c=15∘⇒c=90∘ (thỏa mãn)
Vậy số đo của ba góc �,�,�A,B,C lần lượt là 30∘;60∘;90∘30∘;60∘;90∘.
b) Vì �^<�^<�^A<B<C nên ��<��<��BC<AC<AB.