K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 9 2023

Lời giải:
Đặt $A=1-2+2^2-2^3+2^4-2^5+2^6-....-2^{2021}+2^{2022}$

$A=1+(-2+2^2-2^3)+(2^4-2^5+2^6)+(-2^7+2^8-2^9)+...+(2^{2020}-2^{2021}+2^{2022})$

$A=1+(-2+2^2-2^3)+2^3(2-2^2+2^3)+2^6(-2+2^2-2^3)+....+2^{2019}(2-2^2+2^3)$

$=1+(-6)+2^3.6+2^6(-6)+....+2^{2019}.6$

$=1+6(-1+2^3-2^6+...+2^{2019})$

Suy ra $A$ chia $6$ dư $1$/

23 tháng 5 2017

\(\frac{A}{B}=\frac{\frac{2000}{1}+\frac{1999}{2}+...+\frac{1}{2000}+2000}{1+\frac{1999}{2}+\frac{1998}{3}+...+\frac{1}{2000}}\)

\(=\frac{\left[\frac{2001}{1}+1\right]+\left[\frac{2001}{2}+1\right]+...+\left[\frac{2001}{2000}+1\right]+2001}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}}\)

\(=\frac{2001\left[1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}\right]}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}}=2001\)

23 tháng 5 2017

$\ge $ 

3 tháng 5 2019

#)Thắc mắc ? 

Cho mk hỏi cái ''với 2'' là j bn ? so sánh ak, nếu là so sánh thì mk giải thế này :

#)Giải :

\(M=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{49.50}\)

\(M=2-1+1-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+...+\frac{2}{48}-\frac{2}{49}+\frac{2}{49}-\frac{2}{50}\)

\(M=2-\frac{2}{50}\)

\(M=1\frac{24}{25}=\frac{49}{25}\)

So sánh \(\frac{49}{25}\)với  2

\(2=\frac{2}{1}=\frac{50}{25}\)

Vì \(\frac{49}{25}< \frac{50}{25}\Rightarrow\frac{49}{25}< 2\Rightarrow M< 2\)

          #~Will~be~Pens~#

\(M=\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{49.50}=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)=2\left(1-\frac{1}{50}\right)=2x\frac{49}{50}=\frac{49}{25}=1\frac{24}{25}\)

Vì M=1 24/25

=>M<2

12 tháng 6 2016

mk làm rồi đó bạn xem đi Xem câu hỏi

12 tháng 6 2016

Cảm ơn bạn Thắng Nguyễn nha sẵn tiện kết bạn với mình luôn nhé

\(4\cdot5^2-3^2\cdot\left(2021^0+3^2\right)\)
\(=4\cdot25-9\cdot\left(1+9\right)\)
\(=100-9\cdot10\)
\(=100-90\)
\(=10\)

17 tháng 12 2021

4. 52- 32. ( 20210+ 32)

= 4 . 25 - 9 . ( 1 + 9 )

= 100 - 9 . 10

= 100-90

= 10

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Lời giải:

$A=(21-23)+(25-27)+....+(2021-2023)$

$=(-2)+(-2)+...+(-2)$

Số lần xuất hiện của $-2$ là: $[(2023-21):2+1]:2=501$

$A=501(-2)=-1002$

$B=(1-2-3+4)+(5-6-7+8)+....+(1997-1998-1999+2000)$

$=0+0+0+...+0=0$

11 tháng 3 2021

=2^2022-2^2

7 tháng 8 2016

Ta có:

\(\frac{A}{B}=\frac{\frac{2000}{1}+\frac{1999}{2}+\frac{1998}{3}+...+\frac{1}{2000}+2000}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)

\(\Leftrightarrow\frac{A}{B}=\frac{\left(\frac{2000}{1}+1\right)+\left(\frac{1999}{2}+1\right)+\left(\frac{1998}{3}+1\right)+...+\left(\frac{1}{2000}+1\right)+2000+1}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)

\(\Leftrightarrow\frac{A}{B}=\frac{\frac{2001}{1}+\frac{2001}{2}+\frac{2001}{3}+...+\frac{2001}{2000}+2001}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)

\(\Leftrightarrow\frac{A}{B}=\frac{2001\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)

\(\Leftrightarrow\frac{A}{B}=2001\)

15 tháng 2 2020

bn cộng trên tử rồi thì phải trừ đi chứ ko phân số sẽ thay đổi