Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}\)
\(A=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(A=2\left(1-\frac{1}{20}\right)\)
\(A=2.\frac{19}{20}=\frac{19}{10}\)
Vậy ...
=2.(\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+......+\(\frac{1}{19.20}\))
=2.( 1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+..........+\(\frac{1}{19}\)-\(\frac{1}{20}\))
=2.(1-\(\frac{1}{20}\))
=2.\(\frac{19}{20}\)
= \(\frac{19}{10}\)
D=1.2+2.3+3.4+...+19.20
=>3D=1.2.3+2.3.3+3.4.3+...+19.20
=1.2.3+2.3(4-1)+3.4(5-2)+...+19.20(21-18)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+19.20.21-18.19.20
=19.20.21=7980
=>D=7980:3=2660
Vậy D=2660
Đặt \(A=1.2+2.3+3.4+...+19.20\)
Ta có: \(A=1.2+2.3+3.4+...+19.20\)
\(3A=1.2.3+2.3.3+3.4.3+...+19.20.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-1\right)+...+19.20.\left(21-1\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+19.20.21-18.19.20\)
\(3A=19.20.21\)
\(A=19.20.7\)
\(A=2660\)
\(1\cdot2+2\cdot3+...+19\cdot20=\frac{1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+...+19\cdot20\cdot\left(21-17\right)}{3}\)
\(=\frac{1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+19\cdot20\cdot21-18\cdot19\cdot20}{3}\)\(=\frac{19\cdot20\cdot21}{3}=2660\)
Trả lời
a) \(\frac{-2}{2\cdot3}+\frac{-2}{3\cdot4}+\frac{-2}{4\cdot5}+...+\frac{-2}{19\cdot20}\)
\(=-2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{19\cdot20}\right)\)
\(=-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(=-2\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(=-2\cdot\frac{9}{20}\)
\(=\frac{-18}{20}=\frac{-9}{10}\)
a) \(1.2+2.3+3.4+...+19.20\)
\(=\dfrac{20.\left(20+1\right).\left(20+2\right)}{3}\)
\(=3080\)
b) \(9+99+999+...+999...9\left(100so9\right)\)
\(\)\(=\left(10-1\right)+\left(100-1\right)+\left(1000-1\right)+...+\left(1000...0-1\right)\left(99so0\right)\)
\(=\left(10+10^2+10^3+...10^{99}\right)+\left(-1\right).100\)
\(=\left(1+10+10^2+10^3+...10^{99}\right)+\left(-1\right).101\)
\(=\dfrac{10^{99+1}-1}{99-1}-101\)
\(=\dfrac{10^{100}-1}{98}-101\)
\(=\dfrac{10^{100}-9899}{98}\)
c) \(999.9x222...2\) (100 số 9; 100 số 2)
\(9x2=18\)
\(99x22=2178\)
\(999x222=\text{221778}\)
\(9999x2222=22217778\)
\(99999x22222=2222177778\)
\(.........\)
Theo quy luật trên ta có 100 số 9 nhân 100 số 2:
\(999.9x222...2=222...21777...78\) (99 sô 2; 1 số 1; 99 số 7; 1 số 8)
Tính tổng : A=1.2+2.3+3.4+..+19.20
3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 19.20.21
3A = 19.20.21
A = \(\frac{19.20.21}{3}=3990\)
Tính tổng : A=1.2+2.3+3.4+..+19.20
3a=1.2.3-1.2.3.+2.3.4-2.3.4+......+19.20.21
3a=19.20.21
a=19.20.21:3=3990