Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không biết đầu bài của bạn là gì nhưng nếu rút gọn thì bạn làm theo cách này nha
(a2+ab+b2).(a2 - ab + b2) - (a4+b4)
= (a2+b2)2-(ab)2-a4-b4
= a4+2(ab)2+b4-(ab)2-a4-b4
= (ab)2
Nếu bạn có gì khó hiểu với lời giải này thì cứ hỏi mình nha
phân tích ra là:(a2+b2-ab)(a2+b2+ab)=(a2+b2)2 - (ab)2 hằng đẳng thức.
=>bất đẳng thức bằng (a2+b2)2 - (ab)2 -(a4+b4)=a4+b4+2a2b2 - (ab)2-(a4+b4)=a2b2.
đề chứng mình gì rứa?
a: ĐKXĐ: \(x\notin\left\{10;-10;\sqrt{10};-\sqrt{10}\right\}\)
b: \(A=\dfrac{5x^3+50x+2x^2+20+5x^3-50x-2x^2+20}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)
\(=\dfrac{10x^3+40}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)
a) \(\left(2x+1\right)^2-4\left(x+2\right)^2=12\)
\(\Leftrightarrow4x^2+4x+1-4\left(x^2+4x+4\right)=12\)
\(\Leftrightarrow4x^2+4x+1-4x^2-16x-16-12=0\)
\(\Leftrightarrow-12x-27=0\)
\(\Leftrightarrow x=\frac{-9}{4}\)
b) xem lại đề
c) \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x-3\right)\left(3-x\right)=1\)
\(\Leftrightarrow x^3-27-x\left(x-3\right)^2=1\)
\(\Leftrightarrow x^3-27-x\left(x^2-6x+9\right)-1=0\)
\(\Leftrightarrow x^3-28-x^3+6x^2-9x=0\)
\(\Leftrightarrow6x^2-9x-28=0\)
\(\Leftrightarrow6\left(x^2-\frac{3}{2}x-\frac{14}{3}\right)=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{3}{4}+\frac{9}{16}-\frac{251}{48}=0\)
\(\Leftrightarrow\left(x-\frac{3}{4}\right)^2=\frac{251}{48}=\left(\pm\sqrt{\frac{251}{48}}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{3}{4}=\sqrt{\frac{251}{48}}=\frac{\sqrt{753}}{12}\\x-\frac{3}{4}=-\sqrt{\frac{251}{48}}=\frac{-\sqrt{753}}{12}\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{\pm\sqrt{753}}{12}+\frac{3}{4}=\frac{9\pm\sqrt{753}}{12}\)
d) \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-19\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+19=0\)
\(\Leftrightarrow12x+15=0\)
\(\Leftrightarrow x=\frac{-5}{4}\)
Theo giả thiết:
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Dễ thấy \(VT\ge0\forall a;b;c\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c\)(đpcm)
a) \(a^4+b^4\)
\(=\left(a^2\right)^2+\left(b^2\right)^2\)
\(=\left(a^2-b^2\right).\left(a^2+b^2\right)\)
b) Tương tự
c) \(a^5+b^5\)
\(=\left(\sqrt{a}^5\right)^2+\left(\sqrt{b}^5\right)^2\)
\(=\left(\sqrt{a}^5+\sqrt{b}^5\right).\left(\sqrt{a}^5-\sqrt{b}^5\right)\)
Biểu thức trên ko thể biến đổi ngược thành hằng đẳng thức nhé bạn
Muốn trở thành hằng đẳng thức, có 2 cách
C1: Hằng đẳng thức tổng hai lập phương
\(\left(x+4\right)\left(x^2-4x+16\right)=x^3+64\)
C2: Hằng đẳng thức hiệu hai lập phương
\(\left(x-4\right)\left(x^2+4x+16\right)=x^3-64\)
b) Ta có : a\(^2\)+ b\(^2\)+ c\(^2\) =ab+bc+ca
=> 2(a\(^2\)+b\(^2\)+c\(^2\))= 2(ab+bc+ca)
<=>2a\(^2\)+2b\(^2\)+2c\(^2\)=2ab+2bc+2ca
<=> 2a\(^2\)+2b\(^2\)+2c\(^2\)-2ab-2bc-2ca=0
<=> a\(^2\)+a\(^2\)+b\(^2\)+b\(^2\)+c\(^2\)+c\(^2\)-2ab-2bc=2ca=0
<=> (a\(^2\)-2ab+b\(^2\))+(b\(^2\)-2bc+b\(^2\))+(a\(^2\)-2ca+c\(^2\))
<=> (a-b)\(^2\)+(b-c)\(^2\)+(a-c)\(^2\) =a
<=> hoặc a-b=0 hoặc b-c=o hoặc a-c=o <=>a=b hoặc b=c hoặc a=c
=>a=b=c (đpcm)
a) Theo đề bài: \(a^2+b^2=ab\)
=>\(a^2+b^2-ab=0\)
=>\(a^2-2ab+b^2+ab=0\)
=>\(\left(a-b\right)^2+ab=0\)
Vì \(\left(a-b\right)^2\ge0\) để \(\left(a-b\right)^2+ab=0\) <=> \(\left(a-b\right)^2=ab=0\)
(a-b)2=0 <=> a-b=0 <=> a=b (đpcm)
b)\(a^2+b^2+c^2=ab+bc+ca\)
=>\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
=>\(2a^2+2b^2+2c^2=2ab+2bc+2ac\)
=>\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
Vì \(\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(a-c\right)^2\ge0\end{cases}\) để \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
<=>\(\left(a-b\right)^2=\left(b-c\right)^2=\left(a-c\right)^2=0\)
<=>a-b=b-c=a-c=0
<=>a=b=c (đpcm)
1) \(A=36x^2+12x+1=\left(6x+1\right)^2\ge0\)
\(minA=0\Leftrightarrow x=-\dfrac{1}{6}\)
2) \(B=9x^2+6x+1=\left(3x+1\right)^2\ge0\)
\(minB=0\Leftrightarrow x=-\dfrac{1}{3}\)
4) \(D=x^2-4x+y^2-8y+6=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
\(minD=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
3) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)
\(minC\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
5) \(E=\left(x-8\right)^2+\left(x+7\right)^2=2x^2-2x+113=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{225}{2}\ge\dfrac{225}{2}\)
\(minE=\dfrac{225}{2}\Leftrightarrow x=\dfrac{1}{2}\)
(2+2)2=42=16
hoặc (2+2)2=22+2.2.2+22=4+8+4=16
\(\left(2+2\right)^2=4^2=16\)