Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 . (1 - 1) + 2.(2 - 1) + 3.(3 - 1) + ..... + 20.(20 - 1)
S = 1.2 + 2.3 + 3.4 + .... + 19.20
3S = 1.2.3 + 2.3.(4-1) +....+ 19.20.(21 - 18)
3S = 1.2.3 + 2.3.4 - 1.2.3 + ...+ 19.20.21 - 18.19.20
3S = 19.20.21 = 7980
S = 7980 : 3= 2660
\(\dfrac{2}{1^2}.\dfrac{6}{2^2}.\dfrac{12}{3^2}.\dfrac{20}{4^2}.....\dfrac{110}{10^2}.x=-20\)
\(\dfrac{1.2}{1^2}.\dfrac{2.3}{2^2}.\dfrac{3.4}{3^2}.\dfrac{4.5}{4^2}.....\dfrac{10.11}{10^2}.x=-20\)
\(\dfrac{1.2.2.3.3.4.4.5.5.....10.10.11}{1.1.2.2.3.3.4.4.5.5.....10.10}.x=-20\)
\(11.x=-20\)
\(x=-20:11=-\dfrac{20}{11}\)
\(\dfrac{2}{1^2}\cdot\dfrac{6}{2^2}\cdot\dfrac{12}{3^2}\cdot\dfrac{20}{4^2}\cdot...\cdot\dfrac{110}{10^2}\cdot x=-20\)
\(\Leftrightarrow\dfrac{1\cdot2}{1\cdot1}\cdot\dfrac{2\cdot3}{2\cdot2}\cdot\dfrac{3\cdot4}{3\cdot3}\cdot\dfrac{4\cdot5}{4\cdot4}\cdot...\cdot\dfrac{10\cdot11}{10\cdot10}\cdot x=-20\)
\(\Leftrightarrow\dfrac{1\cdot2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot5\cdot...\cdot10\cdot11}{1\cdot1\cdot2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot...\cdot10\cdot10}\cdot x=-20\)
\(\Rightarrow11\cdot x=-20\)
\(\Rightarrow x=\dfrac{-20}{11}\)
Vậy \(x=\dfrac{-20}{11}\).
ban tinh : 2a = 2^3+2^4+2^5+.......................+2^21
2a-a= 2^3+2^4+..+2^21 - 2^2+2^3+2^4+...................+2^20
= 2^21 - 2^2
Bài 1:
a) 6/2 x+ 1 = 2/7
6/2 x = 2/7 - 1
6/2 x = 2/7 - 7/7
6/2 x = -5/7
x = - 5/7 : 6/2
x = - 5/7 . 2/6
x = -5/21
Ủng hộ nha! :)
BÀI 1 a 6/2x+1=2/7
6/2x=2/7-1
6/2x=-5/7
6*7=5*2x
42=5*2x
42/5=2x
x=42/5:2
x=21/5
1. Ta có :
\(4A=\frac{2^2\left(2^{18}-3\right)}{2^{20}-3}=\frac{2^{20}-12}{2^{20}-3}=\frac{2^{20}-3-9}{2^{20}-3}=\frac{2^{20}-3}{2^{20}-3}-\frac{9}{2^{20}-3}=1-\frac{9}{2^{20}-3}\)
\(4B=\frac{2^2\left(2^{20}-3\right)}{2^{22}-3}=\frac{2^{22}-12}{2^{22}-3}=\frac{2^{22}-3-9}{2^{22}-3}=\frac{2^{22}-3}{2^{22}-3}-\frac{9}{2^{22}-3}=1-\frac{9}{2^{22}-3}\)
Vì \(2^{20}-3< 2^{22}-3\)
\(\Leftrightarrow\frac{9}{2^{20}-3}>\frac{9}{2^{22}-3}\)
\(\Leftrightarrow1-\frac{9}{2^{20}-3}< 1-\frac{9}{2^{22}-3}\)
\(\Leftrightarrow4A< 4B\)
\(\Leftrightarrow A< B\)
Vậy...
b/ Tương tự
\(A=2+2^2+...+2^{20}\\ 2A=2^2+2^3+...+2^{21}\\ A=2^{21}-2\)
Đặt \(A=2+2^2+2^3+...+2^{20}\)
\(2A=2^2+2^3+2^4+...+2^{21}\)
\(2A-A=2^2+2^3+2^4+...+2^{21}-2+2^2+2^3+...+2^{20}\)
\(A=2^{21}-2\)