Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{x+1}\cdot2^{2014}=2^{2015}\\ 2^{x+1}=2^{2015}:2^{2014}\\ 2^{x+1}=2\\ =>x+1=1\\ x=1-1\\ x=0\)
\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)
\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)
\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)
\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)
Đặt N = 1 + 2 + 22 +...+ 22012
2N = 2 + 22 + 23 +...+ 22013
2N - N = (2 + 22 + 23+....+ 22013) - (1 + 2 + 22 +....+ 22012)
N = 22013 - 1
Thay N vào M ta được:
\(M=\dfrac{2^{2013}-1}{2^{2014}-2}=\dfrac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\dfrac{1}{2}\)Đặt \(N=1+2+2^2+...+2^{2012}\)
\(2N=2+2^2+2^3+...+2^{2013}\)
\(2N-N=\left(2+2^2+2^3+...+2^{2013}\right)-\left(1+2+2^2+...+2^{2012}\right)\)
\(N=2^{2013}-1\)
Thay N vào M ta được:
\(M=\dfrac{2^{2013-1}}{2^{2014}-2}=\dfrac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\dfrac{1}{2}\)
`#3107`
\(A=1+2^1+2^2+2^3+...+2^{2015}\)
\(2A=2+2^2+2^3+2^4+...+2^{2016}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)
\(A=2+2^2+2^3+2^4+...+2^{2016}-1-2-2^2-2^3-...-2^{2015}\)
\(A=2^{2016}-1\)
Vậy, \(A=2^{2016}-1.\)
\(A=2^0+2^1+2^2+...+2^{2015}\)
\(2\cdot A=2^1+2^2+2^3+...+2^{2016}\)
\(A=2A-A=2^{2016}-2^0\)
\(A=2^{2016}-1\)
\(A=1+2^1+2^2+...+2^{2015}\)
\(\Rightarrow A=\dfrac{2^{2015+1}-1}{2-1}\)
\(\Rightarrow A=2^{2016}-1\)
\(\Rightarrow A+1=2^{2016}\)
\(\Rightarrow A+1=\left(2^3\right)^{672}\)
\(\Rightarrow A+1=8^{672}\)
Đặt A = 22016 - 22015 - 22014 - ... - 22 - 2 - 1
2A = 2( 22016 - 22015 - 22014 - ... - 22 - 2 - 1 )
2A = 22017 - 22016 - 22015 - ... - 23 - 22 - 2
2A - A = ( 22017 - 22016 - 22015 - ... - 23 - 22 - 2 ) - ( 22016 - 22015 - 22014 - ... - 22 - 2 - 1 )
A = 22017 - 22016 - 22016 + 1
A = 22017 - 2.22016 + 1
A = 22017 - 22017 + 1 = 1