Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình đang cần gấp, tầm khoảng 30 phút nữa là phải nộp. bạn nào xong sớm mình sẽ cho. Thanks!
\(A=\left(7+7^2\right)+\left(7^2+7^3\right)+...+\left(7^{98}+7^{99}\right)\)
\(A=7\left(1+7\right)+7^2\left(1+7\right)+...+7^{98}\left(1+7\right)\)
\(A=8.\left(7+7^2+...+7^{98}\right)⋮8\)
vậy A chia 8 dư 0
Ta có:
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)
\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6A=3+1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow4A=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}=3-\frac{203}{3^{100}}\)
\(\Rightarrow A=\frac{3-\frac{203}{3^{100}}}{4}=\frac{3}{4}-\frac{203}{3^{100}.4}< \frac{3}{4}\Rightarrowđpcm\)
Vậy \(A< \frac{3}{4}\)
\(2017^{2015}\)\(=\left(...3\right)\)
\(2015^{2014}\)\(=\left(...9\right)\)
mà \(2017^{2015}\)>\(2015^{2014}\)vì 2017>2015 ; 2015>2014
\(\Rightarrow\left(...3\right)-\left(...9\right)=\left(...4\right)\)\(\Rightarrow2017^{2015}\)\(-2015^{2014}\)\(\)chia 5 dư 4
A=1+21+22+23+24+....+21013+22014
A=(1+21)+(22+23)+....+(22013+22014)
A=1.1+1.2+1.22+2.22+....+1.22013+2.22013
A=1.(1+2)+22.(1+2)+...+22013.(1+2)
A=1.3+22.3+....+22013.3
A=3.(1+22+....+22013)
\(\Rightarrow\)A\(⋮\)3
2+22+23+.....+22013+22014
=(2+22)+(23+24)+...+(22013+22014)
=(2.1+2.2)+(23.1+23.2)+...+(22013.1+22013.2)
=2.(1+2)+23.(1+2)+...+22013.(1+2)
=2.3+23.3+..+22013.3
=3.(2+23+..+22013)
Vì 3 chia hết cho 3=> 2+22+23+...+22013+22014 chia hết cho 3
ta có
\(2^{2014}=\left(2^6\right)^{335+4}=64^{335}.16\)
\(64\equiv1\left(mod7\right)\)
\(\Rightarrow64^{335}\equiv1\left(mod7\right)\)
\(\Rightarrow64^{335}.16\equiv1.16\equiv2\left(mod7\right)\)
hay \(2^{2014}\equiv2\left(mod7\right)\)
hok tốt