Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 7n + 13 và 2n + 4
ƯC (7n + 13 ; 2n + 4) = d
\(\Rightarrow\left[{}\begin{matrix}\text{ 7n + 13 ⋮ d}\\\text{2n + 4 ⋮ d}\end{matrix}\right.\)
⇒ 7(2n + 4) - 2(7n + 13) ⋮ d
⇒ 2 ⋮ d
d = 1; 2
Xét thấy 7n + 13 không chia hết cho 2 ⇒ d = 1
Để 7n + 13 và 2n + 4 là hai số sau nguyên tố cùng nhau
Thì 7n + 13 là lẻ ⇒ 7n chẵn ⇒ n chẵn
➤ Vậy n chẵn thì hai số đó là hai số nguyên tố cùng nhau
b) 9n + 24 và 3n + 4
\(\Rightarrow\left[{}\begin{matrix}\text{9n + 24 ⋮ d }\\\text{3n + 4 ⋮ d }\end{matrix}\right.\)
⇒ 9n + 24 - 3(3n + 4) ⋮ d
⇒ 12 ⋮ d
d = 1; 2; 3; 4; 6; 12
3n + 4 không chia hết cho 3; 4; 6; 12 ⇒ d = 1; 2
Để 9n + 24 và 3n + 4 là hai số sau nguyên tố cùng nhau
Thì 9n + 24 là lẻ ⇒ 9n lẻ ⇒ lẻ
➤ Vậy n lẻ thì hai số đó là hai số nguyên tố cùng nhau
c) 18n + 3 và 21n + 7
\(\Rightarrow\left[{}\begin{matrix}\text{18n + 3 ⋮ d}\\\text{21n + 7 ⋮ d }\end{matrix}\right.\)
⇒ 6(21 + 7) - 7(18 + 3) ⋮ d
⇒ 21 ⋮ d
d = 3; 7
18n + 3 không chia hết cho 3 ⇒ d = 7
Để 18n + 3 và 21n + 7 là hai số sau nguyên tố cùng nhau
Thì n = 7k - 1 (k ∈ N)
➤ Vậy n = 7k - 1 (k ∈ N) thì hai số đó là hai số nguyên tố cùng nhau
Giả sử \(7n+13\) và \(2n+4\) cùng chia hết cho số nguyên tố d
Ta có: \(7\left(2n+4\right)-2\left(7n+13\right)⋮d\rightarrow2⋮d\rightarrow d\in\left\{1;2\right\}\)
Để \(\left(7n+13;2n+4\right)=1\) thì \(d\ne2\)
Ta có: \(2n+4\) luôn chia hết cho \(2\) khi đó \(7n+13\) không chia hết cho \(2\) nếu \(7n\) chia hết cho \(3\) hay \(n\) chia hết cho \(2.\)
=> Với \(n\) chẵn thì thì \(7n+13\) và \(2n+4\) là hai số nguyên tố cùng nhau
Đặt (7n + 13; 2n + 4) = d
\(\Rightarrow\) \(\left\{{}\begin{matrix}7n+13⋮d\\2n+4⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}2\left(7n+13\right)⋮d\\7\left(2n+4\right)⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}14n+26⋮d\\14n+28⋮d\end{matrix}\right.\)
\(\Rightarrow\) (14n + 28) - (14n + 26) \(⋮\) d
\(\Rightarrow\) 2 \(⋮\) d
\(\Rightarrow\) d \(\in\) Ư(2) = \(\left\{1;2\right\}\)
mà 7n + 13 \(⋮̸\)2
\(\Rightarrow\) d = 1
Vậy (7n + 13; 2n + 4) = 1
1. Xét n chẵn, hai số đều chẵn => ko nguyên tố cùng nhau
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau
9n+24 = 3(3n+8)
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a)
=> k cũng là ước số của (3n+8)-(3n+4) = 4 => k chẵn (b)
Từ (a) và (b) => Mâu thuẫn
Vậy với n lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau
a)Gọi ƯCLN(3n+5;2n+3)=d
=> 3n+5 chia hết cho d => 2(3n+5) chia hết cho d hay 6n+10 chia hết cho d
=>2n+3 chia hết cho d => 3(2n+3) chia hết cho d=> 6n+9 chia hết cho d
=>6n+10-(6n+9) chia hết cho d
=>1 chia hết cho d hay d=1
Do đó, ƯCLN(3n+5;2n+3)=1
Vậy 3n+5; 2n+3 là hai số nguyên tố cùng nhau
b)Gọi ƯCLN(5n+2;7n+3)=a
=>5n+2 chia hết cho a => 7(5n+2) chia hết cho a=> 35n+14 chia hết cho a
=>7n+3 chia hết cho a =>5(7n+3) chia hết cho a=> 35n+15 chia hết cho a
=> 35n+15-(35n+14) chia hết cho a
=>1 chia hết cho a hay a=1
Do đó, ƯCLN(5n+2;7n+3)=1
Vậy 5n+2 và 7n+3 là hai số nguyên tố cùng nhau
a) Gọi d là ƯCLN(3n+5, 2n+3), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}3n+5⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n+5\right)⋮d\\3\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+10⋮d\\6n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n+5,2n+3\right)=1\)
\(\Rightarrow\) 3n+5 và 2n+3 là hai số nguyên tố cùng nhau.
b) Gọi d là ƯCLN(5n+2,7n+3), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}5n+2⋮d\\7n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}7\left(5n+2\right)⋮d\\5\left(7n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+14⋮d\\35n+15⋮d\end{cases}}}\)
\(\Rightarrow\left(35n+15\right)-\left(35n+14\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(5n+2,7n+3\right)=1\)
\(\Rightarrow\) 5n+2 và 7n+3 là hai số nguyên tố cùng nhau.
a)Gọi UCLN(3n+5;2n+3)=d
Ta có:
[2(3n+5)]-[3(2n+3)] chia hết d
=>[6n+10]-[6n+9] chia hết d
=>1 chia hết d
=>3n+5 và 2n+3 là 2 số nguyên tố cùng nhau
b)Gọi UCLN(5n+2;7n+3)=d
Ta có:
[5(7n+3)]-[7(5n+2)] chia hết d
=>[35n+15]-[35n+14] chia hết d
=>1 chia hết d
=>5n+2 và 7n+3 là hai số nguyên tố cùng nhau
Số tự nhiên k là 1
Vì 7.1=7 và 7 chia hết cho 1 và chính nó
11 cũng như vậy