K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

giai nhanh hay giai day du mik giai

11 tháng 6 2017

a) >            b) >            c)=            d) =             e) =           f) =             g) >               h) >

6 tháng 12 2019

25-[5-1x24]-14 =32-[5-24]-14=32-[-19]-14=51-14=37

6 tháng 12 2019

\(2^2\times2^3-\left(5^5:5^4-2010^0\times24\right)-14=2^{2+3}-\left(5^{5-4}-2010^0\times24\right)-14\)

                                                                                      \(=2^5-\left(5^1-1\times24\right)-14\)

                                                                                      \(=32-\left(5-24\right)-14\)

                                                                                      \(=32-\left(-19\right)-14\)

                                                                                      \(=32+19-14=37\)

21 tháng 9 2016

a)  \(\frac{3^{20}\cdot4+3^{20}\cdot5}{3^{21}}=\frac{3^{20}\cdot3^2}{3^{21}}=3\)

b)\(5^{20}\cdot4+5^{20}\cdot7-5^{17}=5^{20}\cdot11-5^{17}=5^{17}\left(5^3\cdot11-1\right)\)

21 tháng 9 2016

a) 320.(4+5) : 321=3

18 tháng 10 2020

\(5^{3x-2}-2.5^3=5^3.3\)

\(5^{3x-2}=5^3.3+2.5^3\)

\(5^{3x-2}=5^3.\left(2+3\right)\)

\(5^{3x-2}=5^3.5\)

\(5^{3x-2}=5^4\)

\(\Rightarrow3x-2=4\)

\(3x=4+2\)

\(3x=6\)

\(x=2\)

18 tháng 10 2020

\(5^{3x-2}-3.5^3=5^3.3\)

\(5^{3x-2}=5^3.3+5^3.2\)

\(5^{3x-2}=5^4\)

\(=>3x-2=4\)

\(=>x=2\)

Vậy x=2

20 tháng 2 2020

a, Ta có :

xy=6

yz=-14

xz=-21

=>(xyz)2=1764=>xzy=42 hoặc -42

+)xyz=42

=>z=42:6=7

=>x=-3

=>y=-2

+)xyz=-42

=>z=-7

=>y=2

=>x=3

A=(2^1+2^2+2^3+2^4+2^5+2^6)+................+(2^2005+2^2006+2^2007+2^2008+2^2009+2^2010)

A=2^1(1+2+2^2+2^3+2^4+2^5)+...................+2^2005(1+2+2^2+2^3+2^4+2^5)

A=2.63+......................+2^2005.63

A=63.(2+..............................+2^2005)

VÌ 63 CHIA HẾT CHO 3 VÀ 7 VẬY A CHIA HẾT CHO 3 VÀ 7.

chúc cậu học tốt!

24 tháng 9 2019

\(16^x< 128^4\)

=> \(\left[2^4\right]^x< \left[2^7\right]^4\)

=> \(2^{4x}< 2^{28}\)

=> 4x < 28

=> x < 7

Đến đây tìm x được rồi

\(\left[3x^2-5\right]+3^4+6^0=5^3\)

=> \(\left[3x^2-5\right]=5^3-6^0-3^4=43\)

=> \(3x^2-5=43\)

=> \(3x^2=48\)

=> \(x^2=16\)

=> \(x=\pm4\)

\(3x+2x\left[2^3\cdot5-3^2\cdot4\right]+5^2=4^4\)

=> \(3x+2x\left[8\cdot5-9\cdot4\right]+25=256\)

=> \(3x+2x\cdot4+25=256\)

=> \(3x+2x\cdot4=231\)

Đến đây tìm x