Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=2020+2020^2+...+2020^{10}\)
\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)
\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)
\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).
b) Bạn làm tương tự câu a).
b, \(A=2021+2021^2+...+2021^{2020}\)
\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)
\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)
Vậy ta có đpcm
\(2^0-2^1+2^2-2^3+...........+2^{2018}\)
đặt \(A=2^0-2^1+2^2-2^3+.....+2^{2018}\)
\(2A=2^1-2^2+2^3-2^4+.......+2^{2019}\)
\(2A+A=2^1-2^2+2^3-2^4+.....+2^{2019}+\left(2^0-2^1+2^2-2^3+....+2^{2018}\right)\)
\(3A=2^1-2^2+2^3-2^4+....+2^{2019}+2^0-2^1+2^2-2^3+....+2^{2019}\)
\(3A=2^0+2^{2019}\)
\(3A=1+2^{2019}\)
\(A=\frac{1+2^{2019}}{3}\)
Ta có: \(\hept{\begin{cases}\left(x-1\right)^{2008}=\left[\left(x-1\right)^{1004}\right]^2\ge0\\\left(y-2\right)^{2020}=\left[\left(y-2\right)^{1010}\right]^2\ge0\\\left(x+y-z\right)^{2022}=\left[\left(x+y-z\right)^{1011}\right]^2\ge0\end{cases}}\)
=> Tổng của 3 số dương =0 khi và chỉ khi cả 3 số đều bằng 0
=> \(\hept{\begin{cases}\left[\left(x-1\right)^{1004}\right]^2=0\\\left[\left(y-2\right)^{1010}\right]^2=0\\\left[\left(x+y-z\right)^{1011}\right]^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x-1=0\\y-2=0\\x+y-z=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)
Đáp số: x=1, y=2, z=3
\(520:\left\{\left[\left(16\cdot5+2^2\cdot5\right):5-5\right]+115\right\}+2017^0\)
\(520:\left\{\left[\left(80-20\right):5-5\right]+115\right\}+1\)
\(520:\left\{\left[60:5-5\right]+115\right\}+1\)
\(520:\left(7+115\right)+1\)
\(520:122+1\)
\(=5,2\)
520 : { [ (16 x 5 + 22 x 5 ) ) : 5 - 5 ] + 115 } + 2017 0
= 520 : { [ (80 + 20) : 5 - 5 ] + 115 } + 1
= 520 : { [ 100 : 5 - 5 ] + 115 } +1
= 520 : { [ 20 - 5 ] + 115 } +1
= 520 : { 15 + 115 } +1
= 520 : 130 +1
= 4 + 1
= 5
a) \(2^2.3-\left(1^{10}+8\right):3^2\)
\(=4.3-\left(1+8\right):9\)
\(=12-9:9\)
\(=12-1\)
\(=11\)
b) \(115^0+13.75+13.25-140\)
\(=0+13.\left(75+25\right)-140\)
\(=0+13.100-140\)
\(=0+1300-140\)
\(=1300-140\)
\(=1160\)
= 4 x (-15) + 15 x 4 -1
\(2^2.\left(-115\right)+15.2^2-2022^0\)
\(=4.\left(-115\right)+15.4-2022^0\)
\(=4.\left(-115+15\right)-1\)
\(=4.\left(-100\right)-1\)
\(=-400-1=-401\)