K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

= 1 - 1/3 + 1/3 .... - 1/31

= 1 - 1/31 = 30/31

3 tháng 8 2018

tại sao lại ra vậy

25 tháng 7 2016

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.........+\frac{1}{13}-\frac{1}{15}\)

\(=1-\frac{1}{15}\)

\(=\frac{14}{15}\)

23 tháng 11 2020

\(A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{101-99}{99.101}\)

\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=\frac{100}{101}\)

28 tháng 7 2015

2/1.3 + 2/3.5 + 2/5.7 + ... + 2/2009.2011

= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/2009 - 1/2011

= 1 - 1/2011

= 2010/2011

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\)

\(=1-\frac{1}{2015}=\frac{2014}{2015}\)

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\)

\(=1-\frac{1}{2015}\)

\(=\frac{2015}{2015}-\frac{1}{2015}\)

\(=\frac{2014}{2015}\)

22 tháng 4 2018

\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

22 tháng 4 2018

2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101

= 2 .( 1/1.3 + 1/3.5 + 1/5.7 + ... + 1/99.101 ) 

= 2 . ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/99 - 1/101 ) 

= 2 . ( 1 - 1/101 ) 

= 2 . ( 101/101 - 1/101 ) 

= 2 . 100/101

= 200/101

Chúc bn hok tốt !!!

24 tháng 6 2017

\(M=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

\(M=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(M=2\left(1-\frac{1}{100}\right)\)

\(M=2.\frac{99}{100}\)

\(M=\frac{99}{50}\)

\(N=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{97.99}\)

\(N=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(N=\frac{3}{2}\left(1-\frac{1}{99}\right)\)

\(N=\frac{3}{2}.\frac{98}{99}\)

\(N=\frac{49}{33}\)

AH
Akai Haruma
Giáo viên
6 tháng 12 2023

Lời giải:

$A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{99-97}{97.99}$

$=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}$

$=1-\frac{1}{99}=\frac{98}{99}$